研究生: |
張竣皓 Zhang, Jun-Hao |
---|---|
論文名稱: |
螺旋傘齒輪之五軸側銑路徑規劃 Tool Path Planning in Five-Axis Flank Milling for Tooth Surfaces of Spiral Bevel Gears |
指導教授: |
瞿志行
Chu, Chih-Hsing |
口試委員: |
陸元平
Luh, Yuan-Ping 葉家宏 Yeh, Chia-Hung |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 螺旋傘齒輪 、五軸加工 、刀具路徑規劃 、側銑加工 、齒面接觸分析 |
外文關鍵詞: | Spiral bevel gears, 5-axis machining, tool path planning, flank milling, tooth contact analysis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
齒輪在動力傳輸中扮演不可或缺的角色,螺旋傘齒輪(spiral bevel gear)由於強度高、運轉平穩與噪音低等優勢,被廣泛應用於高負荷、高轉速的機械系統中,然而其齒面幾何較複雜,大多以齒輪專用機進行製造,缺乏設計或生產的彈性。本研究嘗試以泛用型的五軸工具機,完成螺旋傘齒輪的加工製造,為提高材料移除率,將採用五軸側銑切削,將刀具路徑規劃轉換成數學規劃問題,利用全域最佳化演算法求解刀具運動,降低共軛齒面的加工幾何誤差。並以刀具運動包絡面估算誤差值,期望透過最小化曲面加工誤差,提升齒輪的齒面接觸分析品質,以及動力傳輸效率。此外提出一項簡化的評估方法,以嚙合齒面之間的相交幾何,近似基於有限元素法的齒面接觸分析結果,並透過實際範例顯示其正確性。本研究透過五軸側銑的路徑規劃,產生接近理想齒面的加工結果,藉此得到較佳的齒面嚙合表現,驗證以泛用型切削技術,製造螺旋傘齒輪的可行性。研究成果應可提高螺旋傘齒輪的開發效率,與其生產製造的彈性。
Gear is an important mechanical element in power transmission. Spiral bevel gears provide several advantages over spur gears such as high transmission efficiency, low noise, and smooth running. However, the gear manufacturing requires specialized machines and cutting tools with very limited production flexibility, due to the intricate gear geometry. This research developed a precision tool path planning method for five-axis flank milling of spiral bevel using general-purpose machine tools. The method reduces the geometrical errors produced on the pinion gear by adjusting the tool path defined by three free-form curves describing the moving trajectory of the cutter center point, the variation of the tilt and yaw angles, respectively. A meta-heuristic algorithm incorporating the curve subdivision technique is applied to search for optimal solutions of the curve control points. The Tooth Contact Analysis (TCA) results indicate that the pinion gear created by the optimal tool path outperforms the one produced by the previous planning method, in which the cutter contacts the center curve of the gear surface. We have shown that optimization-driven tool path planning enables precision five-axis machining of spiral bevel gears. This research provides a feasible method for gear manufacturing using generalized CNC machine tools, and thus increases the development efficiency and production flexibility of spiral bevel gears.
[1] Argyris, J., Fuentes, A., & Litvin, F. L. (2002). Computerized integrated approach for design and stress analysis of spiral bevel gears. Computer methods in applied mechanics and engineering, 191(11-12), 1057-1095.
[2] Ding, H., Tang, J. Y., Zhou, Z. Y., & Cui, W. (2016). Tooth flank reconstruction and optimizations after simulation process modeling for the spiral bevel gear. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 230(13), 2260-2272.
[3] Zhou, Y., Peng, S., Liu, X., Liu, S., & Tang, J. (2018). A novel method to generate the tooth surface model of face-milled generated spiral bevel gears. The International Journal of Advanced Manufacturing Technology, 1-10.
[4] Fong, Z. H., & Tsay, C. B. (1991). A mathematical model for the tooth geometry of circular-cut spiral bevel gears. Journal of Mechanical Design, 113(2), 174-181.
[5] Chen, B., Liang, D., & Li, Z. (2014). A study on geometry design of spiral bevel gears based on conjugate curves. International journal of precision engineering and manufacturing, 15(3), 477-482.
[6] Shih, Y. P. (2010). A novel ease-off flank modification methodology for spiral bevel and hypoid gears. Mechanism and Machine Theory, 45(8), 1108-1124.
[7] Tsai, Y. C., & Hsu, W. Y. (2008). The study on the design of spiral bevel gear sets with circular-arc contact paths and tooth profiles. Mechanism and Machine Theory, 43(9), 1158-1174.
[8] Álvarez, Á., Calleja, A., Arizmendi, M., González, H., & Lopez de Lacalle, L. (2018). Spiral bevel gears face roughness prediction produced by CNC end milling centers. Materials, 11(8), 1301.
[9] Álvarez, A., de Lacalle, L. L., Olaiz, A., & Rivero, A. (2015). Large spiral bevel gears on universal 5-axis milling machines: a complete process. Procedia engineering, 132, 397-404.
[10] Suh, S. H., Jung, D. H., Lee, S. W., & Lee, E. S. (2003). Modelling, implementation, and manufacturing of spiral bevel gears with crown. The International Journal of Advanced Manufacturing Technology, 21(10-11), 775-786.
[11] Yao, L., Gu, B., Haung, S., Wei, G., & Dai, J. S. (2010). Mathematical modeling and simulation of the external and internal double circular-arc spiral bevel gears for the nutation drive. Journal of Mechanical Design, 132(2), 021008.
[12] Shih, Y. P., & Chen, S. D. (2012). A flank correction methodology for a five-axis CNC gear profile grinding machine. Mechanism and Machine Theory, 47, 31-45.
[13] Xiang, T., Yi, J., & Li, W. (2018). Five-Axis Numerical Control Machining of the Tooth Flank of a Logarithmic Spiral Bevel Gear Pinion. Transactions of FAMENA, 42(1), 73-84.
[14] Ozel, C., Inan, A., & Özler, L. (2005). An investigation on manufacturing of the straight bevel gear using end mill by CNC milling machine. Journal of manufacturing science and engineering, 127(3), 503-511.
[15] Zhou, Y., Chen, Z. C., & Tang, J. (2017). A new method of designing the tooth surfaces of spiral bevel gears with ruled surface for their accurate five-axis flank milling. Journal of Manufacturing Science and Engineering, 139(6), 061004..
[16] Litvin, F. L., & Fuentes, A. (2004). Gear geometry and applied theory. Cambridge University Press.
[17] Tsay, D. M., & Her, M. J. (2001). Accurate 5-axis machining of twisted ruled surfaces. Journal of Manufacturing Science and Engineering, 123(4), 731-738.
[18] Chu, C. H., Lee, C. T., Tien, K. W., & Ting, C. J. (2011). Efficient tool path planning for 5-axis flank milling of ruled surfaces using ant colony system algorithms. International Journal of Production Research, 49(6), 1557-1574.
[19] Chu, C. H. & Hsieh, H. T. (2012). Generation of reciprocating tool motion in 5-axis flank milling based on particle swarm optimization. Journal of Intelligent Manufacturing, 23(5), 1501-1509.
[20] 陳湘雲,基於連續型編碼之五軸側銑路徑最佳化,清華大學工業工程與工程管理學系,碩士論文計劃書,2017。
[21] 郭奇龍,結合統計方法之五軸側銑路徑最佳化,清華大學工業工程與工 程管理學系,博士論文,2016。
[22] 沈哲瑋,透過加工路徑規劃減少五軸數控工具機之運動能量消耗,清華大學工業工程與工程管理學系,碩士論文計劃書,2017。
[23] KHK齒輪大學,齒輪ABC入門篇,2006,https://www.khkgears.co.jp/tw/gear_technology/pdf/gearabc_a.pdf
[24] Alloy USA,GEARING CONTACT PATTERNS, http://www.alloyusa.com/GEAR-PATTERNS
[25] Spall, J. C. (2003). Simultaneous perturbation stochastic approximation. Introduction to stochastic search and optimization: Estimation, simulation, and control, 176-207.
[26] Zhou, Y., Chen, Z. C., & Yang, X. (2015). An accurate, efficient envelope approach to modeling the geometric deviation of the machined surface for a specific five-axis CNC machine tool. International Journal of Machine Tools and Manufacture, 95, 67-77.
[27] Kennedy, J. (2010). Particle swarm optimization. Encyclopedia of machine learning, 760-766.