簡易檢索 / 詳目顯示

研究生: 黃垣翰
Huang, Yuan- Han.
論文名稱: 以界面工程技術提升大面積有機太陽能電池之熱穩定性
Improving the thermal stability of Large-area Organic Solar Cells by interface engineering
指導教授: 洪勝富
Horng, Sheng-Fu
口試委員: 孟心飛
Meng, Hsin-Fei
張志宇
Chang, Chih-Yu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 74
中文關鍵詞: 有機太陽能電池刮刀塗佈大面積界面層溶液製程穩定性界面層混摻雜
外文關鍵詞: Organic solar cells, Blade-coating, Large-area, Interlayer, Solution-processed, Stability, Doped interlayer
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在有機太陽能電池未來商業化與發展的趨勢下,除了轉換效率的提升外,在量產與成本以及元件的穩定性上更不容被忽視,本論文使用了刮刀塗佈製程除了能與roll-to-roll 的製程結合外,也加以應用於有效面積216cm2的元件上而此特點在於不須將多個太陽能電池模組化,而是在一次製程中即完成大面積化,因而大大降低時間與成本。
    本論文除了上述太陽能電池的大面積化以外也成功地將溶液製程應用於界面層上,在ITO/PEDOT:PSS/PBDTTT-EFT:PC71BM/Liq/Al/Ag結構下達到4.76%的高轉換效率,而穩定性方面透過引入適當的界面層材料Liq與ZrOx,使元件壽命上獲得了大幅度的提升,在經過放置一個月持續80℃的高溫環境下分別維持了初始效率的65.8%與68%,而相較之下傳統熱蒸鍍LiF界面層在經過三天加熱下已衰退到初始效率的一半。
    最後嘗試以ZrOx為主體下摻雜Liq,目的在於希望藉由摻雜材料之特性提升原材料初始效率,而在Liq為ZrOx莫耳濃度3%條件下開路電壓由11.45(V)提升至12.2(V),FF由0.41至0.45而PCE由3.6%至4.17%,在穩定性上也獲的了良好的結果,在經過一個月持續80℃的高溫環境下維持了初始效率的70%。


    In the future commercialization and development of organic solar cells, in addition to the improvement of power conversion efficiency, it is more important in terms of mass production and cost and stability. This thesis uses blade-coating process that not only can be combined with roll-to-roll process,but also applied on the device with active area of 216 cm2 and this feature is not necessary modularize a plurality of OSCs but complete the large-area OSCs in one process,therefore, the time and cost are greatly reduced.
    In addition to the large area of solar cells, this thesi successfully applied the solution- processed interlayer, achieving a high power conversion efficiency of 4.76% under the device structure ITO/PEDOT:PSS/PBDTTT-EFT:PC71BM/Liq/Al/Ag . In addition, the stability of the device has been greatly improved through the use of suitable interlayers Liq and ZrOx, and remained 65.8% and 68% of the initial PCE at a high temperature of 80°C for one month. In contrast, the traditionally thermal evaporated LiF interlayer has already declined to half of the initial PCE after three days at 80°C high temperature.
    Finally, we tried ZrOx doped by Liq. This purpose was to increase the initial PCE by the characteristics of the doped material, and the Voc was raised from 11.45 (V) to 12.2 (V) when the Liq was 3% of the ZrOx molar concentration, FF from 0.41 to 0.45 and PCE from 3.6% to 4.17%. Good results are also obtained in terms of stability, and 70% of the initial PCE is remained at a high temperature of 80°C for one month.

    摘要 i Abstract ii 誌謝 iv 目錄 vi 表目錄 viii 圖目錄 ix 第一章 緒論 1 1.1 研究背景 1 1.1.1 前言 1 1.1.2 太陽電池的發展 1 1.1.3 有機太陽能電池之發展 3 1.2 研究動機 6 1.2.1 有機高分子材料太陽能電池優勢 6 1.2.2 高效率混合層之有機太陽能電池 7 1.3 文獻回顧 8 1.3.1 刮刀塗佈製程方法製作高分子有機光電元件 8 1.3.2 有機太陽能電池的大面積化 9 1.4 論文架構 11 第二章 實驗原理 12 2.1 太陽能電池基本之介紹 12 2.1.1 太陽能電池之基本原理 12 2.1.2 太陽電池之等效電路 13 2.1.4 太陽能電池的重要參數介紹 15 2.1.5 太陽能電池操作分析 21 2.2 本論文選用之結構介紹 24 2.3 本論文選用之材料物理特性 25 2.3.1 主動層使用材料 26 2.3.2 電洞傳輸層使用材料 27 第三章 實驗方法與流程 31 3.1 有機太陽電池元件製作流程 31 3.2 ITO基板的蝕刻與圖樣化 32 3.3 ITO基板的準備和清潔 34 3.4 正結構高分子主動層上膜 35 3.4.1 實驗設備 35 3.4.2 電洞傳輸層(Hole Transport Layer, HTL) 35 3.4.3 高分子主動層成膜 36 3.5 界面層上膜 38 3.6 電極蒸鍍 38 3.7 元件封裝 39 3.8 電性量測 41 第四章 界面層實驗結果與討論 42 4.1 實驗動機 42 4.2 界面層以水溶液與蒸鍍製程上的表現差異 43 4.2.1 不同製程方式比較 43 4.2.2 壽命表現差異 44 4.2.3 界面層表面型態 44 4.3 應用不同界面層材料於元件之提升 46 4.3.1 不同界面層於元件上特性 46 4.3.2 Liq應用於大面積有機太陽能電池 48 4.3.3 Liq壽命表現 52 4.3.4 ZrOx應用與於大面積有機太陽能電池 54 4.3.5 ZrOx壽命表現 55 4.4 界面層混參雜 57 4.4.1 ZrOx+Liq應用於大面積太陽能電池 57 4.4.2 ZrOx+Liq壽命表現 58 4.4.3 各界面層80℃加速老化後的表面型態與電性比較 60 4.5 大面積太陽能電池於綠溫室應用 63 第五章、總結與未來展望 66 參考文獻 68

    [1]. D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon pn junction photocell for converting solar radiation into electrical power,” J. Appl. Phys. 25, 676 (1954).
    [2]. J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “ Novel 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl.Phys. Lett. 73, 1991 (1998).
    [3]. O. Schultz,S. W. Glunz, G. P. Willeke, “ Multicrystalline silicon solar cells exceeding 20% efficiency,” Prog. Photovolt. : Res. Appl.12, 553( 2004).
    [4]. S. Benagli, D. Borrello, E. Vallat-Sauvain, J .Meier, U. Kroll, J .Hötzel, J .Spitznagel, J .Steinhauser, L .Castens, Y. Djeridane “ High-efficiency amorphous silicon devices on LPCVD-ZNO TCO prepared in industrial KAI-M R&D reactor,” 24th European Photovoltaic Solar Energy Conference, Hamburg, Sept. (2009).
    [5]. P.-T. Tsai, K.-C.Lin, C.-Y.Wu, C.-H.Liao, M.-C.Lin, Y. Q. Wong, H.-F.Meng,C.-Y.Chang, C.-L.Wang,Y.-F.Huang, S.-F.Horng, H.-W.Zan, Y.-C Chao “Toward long-term stable and efficient large-area organic solar cells, ” ChemSusChem 102778−2787 , 2017.
    [6]. K. M. Coakley,Wudl and M. D. McGehee,“Conjugated polymer photovoltaic cells,” Chem. Mater. 16, 4533 (2004).
    [7]. Harald Hoppe, and Niyazi Serdar Sariciftci, “Organic solar cell: An review,” J. Mater. Res. , Vol. 19, No. 7, (2004).
    [8]. P.-T. Tsai, K.-C. Lin, C.-Y. Wu, C.-H. Liao, M.-C. Lin, Y. Q. Wong, H.-F. Meng, C.-Y. Chang, C.-L. Wang, Y.-F. Huang, S.-F. Horng , H.-W. Zan, Y.-C. Chao “Towards Long-Term Stable and Efficient Large-Area Organic Solar Cells,” ChemSusChem 10.1002/cssc. 201700601
    [9]. W. Huang , E. Gann , L. Thomsen , C. Dong , Y.-B. Cheng , C. R. McNeill “Unraveling the Morphology of High Efficiency Polymer Solar Cells Based on the Donor Polymer PBDTTT-EFT,” Adv. Energy Mater. 2014, 1401259
    [10]. S. Zhang et al., Side Chain Selection for Designing Highly Efficient Photovoltaic Polymers with 2D-Conjugated Structure, Macromolecules , 47, 4653-4659,2014.
    [11]. E.-C. Chen, P.-T. Tsai, B.-J. Chang, C.-M. Wang, H.-F. Meng, J.-Y. Tsai,Y.-F. Chang, Z.-K. Chen, C.-H. Li, Y.-H. Hsu, C.-Y. Chen, H.-W. Lin, H.-W.Zan, S.-F. Horng “Multilayer rapid-drying blade coating for organic solar cells by low boiling point solvents” Japanese Journal of Applied Physics 53, 062301 (2014)
    [12]. S. R. Tseng, H. F. Meng, K. C. Lee, and S. F. Horng. Appl. Phys. Lett. 93, 153308 (2008).
    [13]. L. Mao, J. Tong, S. Xiong, F. Jiang, F. Qin, W. Meng, B. Luo, Y. Liu, Z. Li, Y. Jiang, C. F.-Hernandez, B. Kippelen, Y. Zhou,“Flexible large-area organic tandem solar cells with high defect tolerance and device yield”, J. Mater. Chem. A 5, 3186–3192, (2017)
    [14]. J. Zhang, Y. Zhao, J. Fang, L. Yuan, B. Xia, G. Wang, Z. Wang, Y. Zhang, W. Ma, W. Yan, W. Su, Z. Wei, “Enhancing Performance of Large-Area Organic Solar Cells with Thick Film via Ternary Strategy”, small 13, 1700388, (2017)
    [15]. S.-L. Lim, K.-H. Ong, J. Li, L. Yang, Y.-F. Chang, H.-F. Meng, X. Wang and Z.-K. Chen, Efficient, “large area organic photovoltaic modules with active layers processed with non-halogenated solvents in air”, Org. Electron., 43, 55-63, (2017)
    [16]. H. Jin, C. Tao, M. Velusamy, M. Aljada, Y. Zhang, M. Hambsch, P. L. Burn and P. Meredith, “ Efficient, Large Area ITO-and-PEDOT-free Organic Solar Cell Sub-modules”, Adv. Mater. 24, 2572, (2012)
    [17]. A. Armin, M. Hambsch, P. Wolfer, H. Jin, J. Li, Z. Shi, P. L. Burn, P. Meredith, Efficient, “Large Area, and Thick Junction Polymer Solar Cells with Balanced Mobilities and Low Defect Densities”, Adv. Energy Mater., 5, 1401221, (2015)
    [18]. M. J. Beliatis. K. K. Gandhi, L. J. Rozanski, R. Rhodes, L. McCafferty, M. R. Alenezi, A. S. Alshammari, C. A. Mills, K. D. G. I. Jayawardena, S. J. Henley, S. R. P. Silva, “Hybrid Graphene-Metal Oxide Solution Processed Electron Transport Layers for Large Area High-Performance Organic Photovoltaics”, Adv. Mater., 26, 2078–2083, (2014)
    [19]. N. Agrawal, M. Z. Ansari, A. Majumdar, R. Gahlot, N. Khare, “ Efficient up-scaling of organic solar cells”, Energy Mater. Sol. Cells 157, 960-965, (2016)
    [20]. L. Lucera, F. Machui, P. Kubis, H. D. Schmidt, J. Adams, S. Strohm, T. Ahmad, K. Forberich, H.-J. Egelhaaf, C. J. Brabec,“Highly efficient, large area, roll coated flexible and rigid OPV modules with geometric fill factors up to 98.5% processed with commercially available materials”, Energy Environ. Sci. 9, 89-94, (2016)
    [21]. P.-T. Tsai, K.-C. Yu, C.-J. Chang, S.-F. Horng and H.-F. Meng, “Large-area organic solar cells by accelerated blade coating”, Org. Electron., 22, 166, (2015)
    [22]. T. Winkler, H. Schmidt, H. Flügge, F. Nikolayzik, I. Baumann, S. Schmale, T. Weimann, P. Hinze, H.-H. Johannes, T. Rabe, S. Hamwi, Th. Riedl, W. Kowalsky, “Efficient large area semitransparent organic solar cells based on highly transparent and conductive ZTO/Ag/ZTO multilayer top electrodes”, Organic Electronics, 12, 1612–1618, (2011)
    [23]. L. Zuo, S. Zhang, H. Li, H. Chen, “Toward Highly Efficient Large-Area ITO-Free Organic Solar Cells with a Conductance-Gradient Transparent Electrode”, Adv. Mater., 27, 6983–6989, (2015)
    [24]. Y. Q. Wong, H.-F. Meng, H. Y. Wong, C. S. Tan, C.-Y. Wu, P.-T. Tsai, C.-Y.Chang, S.-F. Horng, H.-W. Zan, “Efficient semitransparent organic solar cells with good color perception and good color rendering by blade coating”, Org.Electron., 43, 196-206, (2017)
    [25]. S. Berny, N. Blouin, A. Distler, H.-J. Egelhaaf, M. Krompiec, A. Lohr, O. R.Lozman, G. E. Morse, L. Nanson, A. Pron, T. Sauermann, N. Seidler, S.Tierney, P. Tiwana, M. Wagner, H. Wilson, Solar Trees: “ First Large-Scale Demonstration of Fully Solution Coated, Semitransparent, Flexible Organic Photovoltaic Modules”, Adv. Sci., 3, 1500342, (2016)
    [26]. L. Lucera, F. Machui, H.D. Schmidt, T. Ahmad, P. Kubis, S. Strohm, J.Hepp,A.Vetter, H.-J. Egelhaaf, C.J. Brabec, “Printed semi-transparent large area Organic photovoltaic modules with power conversion efficiencies of close to 5%”, Org.Electron., 45, 209-214, (2017)
    [27]. R.N. Marks, J.J.M. Halls, D.D.C. Bradley, R. H. Friend, A. B. Holmes,“The photovoltaic response in poly(ppheny1ene vinylene) thin-film devices”, J.Phys. :Condens. Matter. 6, 1379 (1994).
    [28]. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, M.T. Rispens, L. Sanchez, J. C. Hummelen, and T Fromherz, “ The influence of materials work function on the open circuit voltage of plastic solar cells,” Thin Solid Film, 403-404,368 (2002).
    [29]. H. Kim, S-H. Jin, H. Suh, and K. Lee, “Origin of the open circuit voltage in conjugated polymer-fullerene photovoltaic cells”, In Organic Photovoltaics IV, edited by Z.H. Kafafi, and P.A. Lane, Proceedings of the SPIE, Vol. 5215, p. 111(SPIE, Bellingham, WA, 2004).
    [30]. W. Huang, E. Gann, L. Thomsen, C. Dong, Y.-B. Cheng, C. R. McNeill, “Unraveling the Morphology of High Efficiency Polymer Solar Cells Based on the Donor Polymer PBDTTT-EFT”, Advanced Energy Materials Volume 5, Issue 7 April 8, 2015.
    [31]. P.-T.Tsai, K.-C.Lin, C.-Y. Wu, C.-H.Liao, M.-C.Lin, Y.Q.Wong, H.-F.Meng, C.-Y.Chang, C.-L.Wang, Y.-F.Huang, S.-F.Horng, H.-W.Zan, Y.-C.Chao, “Towards Long-Tem Stable and Efficient Large-Area Organic Solar Cells”. ChemSusChem, (2017).
    [32]. Zhan’ao Tan, S. Li, F. Wang, D. Qian, J. Lin, J. Hou ,Y. Li,“High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer”, Scientific Reports volume 4, 4691,2014.
    [33]. C.-Y. Chang, W.-K. Huang, J.-L. Wu, Y.-C. Chang, K.-T. Lee, C.-T. Chen,“Room-temperature Solution-Processed n-Doped Zirconium Oxide Cathode Buffer Layer for Efficient and Stable Organic and Hybrid Perovskite Solar Cells”, Chem. Mater,242-251,2016.
    [34]. H.C.Liao, C.C.Ho, C.Y.Chang, M.H.Jao, S.B.Darling, W.F.Su, “ Additives for morphology control in high-efficiency organic solar cells”, Mater. Today. 16 (2013) 326–336.
    [35]. H. Zhang, Q. Zhang, M. Li, B. Kan, W. Ni,Y. Wang,X. Yang, C. Du, X. Wan,Y. Chen, “Investigation of the enhanced performance and lifetime of organic solar cells using solution-processed carbon dots as the electron transport layers”, Cite this: J. Mater. Chem. C, 2015,3, 12403
    [36]. W. Liu,T. Liang,Q. Chen, Z. Yu,Y. Zhang,Y. Liu,W. Fu, F. Tang,L. Chen, H. Chen,“Solution-Processed 8‑Hydroquinolatolithium as Effective Cathode Interlayer for High-Performance Polymer Solar Cells”, ACS Appl. Mater. Interfaces 2016, 8, 9254−9261
    [37]. H. Fan ,X. Zhu, “High-Performance Inverted Polymer Solar Cells with Zirconium Acetylacetonate Buffer Layers”, ACS Appl. Mater. Interfaces 2016, 8, 33856−33862
    [38]. C. H. Peters, I. T. Sachs-Quintana, J. P. Kastrop, S. Beaupre, M. Leclerc, M. D. McGehee ,“High Efficiency Polymer Solar Cells with Long Operating Lifetimes”, Adv. Energy Mater. 2011, 1, 491–494
    [39]. M. O. Reesea, A. J. Morfa , M. S. White , N. Kopidakis , S. E. Shaheen , G. Rumbles , D. S. Ginley,“Pathways for the degradation of organic photovoltaic P3HT:PCBM based devices”, doi:10.1016/j.solmat.2008.01.020
    [40]. T. Chiba,Y.-J. Pu, M. Hirasawa, A. Masuhara, H. Sasabe, J. Kido, “Solution-Processed Inorganic−Organic Hybrid Electron Injection Layer for Polymer Light-Emitting Devices”, ACS Appl. Mater. Interfaces 2012, 4, 6104−6108
    [41]. A. Barbot, B. Lucas, C. Di Bin, B. Ratier, M. Aldissi, “Optimized inverted polymer solar cells incorporating Cs2CO3-doped C60 as electron transport layer”, Appl. Phys. Lett. 102, 193305 (2013); doi: 10.1063/1.4807388
    [42]. A. Barbot, B. Lucas, C. Di Bin, B. Ratier, “Cesium carbonate-doped 1,4,5,8-naphthalene-tetracarboxylicdianhydride used as efficient electron transport material in polymer solar cells”, Organic Electronics 15 (2014) 858–863

    無法下載圖示 全文公開日期 2023/07/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE