研究生: |
徐嘉宏 Hsu, Chia-Hung |
---|---|
論文名稱: |
硒化鐵高壓下結構特性研究 The Structure Properties of Ferrous Selenide (FeSe) Under High Pressure |
指導教授: |
林志明
Lin, Chih-Ming |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 155 |
中文關鍵詞: | 高壓 、相變 、硒化鐵 、粉末繞射 、結構精算 |
外文關鍵詞: | High Pressure, Phase Transition, FeSe, Powder Diffraction, Refiinement |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究使用 X 光繞射角度擴散分析 (Angular-Dispersive X-ray Diffraction, ADXRD),並用廣泛結構分析系統 (General Structure Analysis System, GSAS) 軟體擬合數據,探討硒化鐵 (FeSex,x=1、0.88)、硒化鐵摻銅 (Fe1-xCuxSe0.85,x=0.01、0.02) 與硒化鐵摻錳 (Fe1-xMnxSe0.85,x=0.01、0.02、0.04) 高壓下的物理性質。研究結果顯示,壓力上升 FeSe 由 Tetragonal 結構轉變成 Hexagonal 結構,在加壓的過程中,Tetragonal 結構的 c軸比 a 軸更容易壓縮,加壓約在4 GPa 有結構鬆散的現象。在 Tetragonal 結構即將轉變為 Hexagonal 結構時,Tetragonal、Hexagonal 的重量比例、原子距離、鍵結角度會急遽的改變,非超導特性的 Fe0.98Cu0.02Se0.85 則無此現象。本研究觀察壓力參數與超導溫度的關係。
Abstract
In this study, using angular-dispersive X-ray diffraction (ADXRD), with general structure analysis system (GSAS) software to fit the data to analysis the ferrous selenide (FeSex, x=1, 0.88), copper-doped ferrous selenide (Fe1-xCuxSe0.85, x=0.01, 0.02) manganese-doped ferrous selenide (Fe1-xMnxSe0.85, x=0.01, 0.02, 0.04) physical properties under high pressure. The results showed that the phase transitions from the tetragonal phase to the hexagonal phase into FeSe structure when the pressure ascends. When the pressure about 4 GPa, the structure has softening phenomenon, and the tetragonal structure of the c-axis is more easily compressed than the a-axis. When the tetragonal structure transition to the hexagonal structure, the tetragonal and hexagonal weight ratio, atom distances, bond angles will be changes, but non-superconducting characteristics of Fe0.98Cu0.02Se0.85 have not this phenomenon. This study was observed pressure parameters and the superconducting temperature relationship.
參考文獻
[1] H. K. Onnes, Phys. Lab. Univ. Leiden, 12, 120 (1911).
[2] 陳引幹,“零電阻時代的超導陶瓷”, 科學發展, 375期, 6-11 (2004).
[3] Allister M Forrest, Eur J. Phys., 4, 117-120 (1983).
[4] 陳引幹,“高溫超導材料與其磁浮上之應用”, 物理雙月刊, 29卷, 4期, 815-818 (2007).
[5] Jia-Su Wang and Su-Yu Wang, IEEE Transactions on Applied
Superconductivity, Vol. 13, No. 2 (2003).
[6] J. G. Bednorz and K. A. Müller, Z. Phys. B Condensed Matter, 64, 2, 189-193 (1986).
[7] M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett., 58, 908 (1987).
[8] Yoichi Kamihara, Takumi Watanabe, Masahiro Hirano, and Hideo Hosono, JACS, 130, 11, 3296-3297 (2008).
[9] F.C. Hsu, J.Y. Luo, K.W. Yeh, T.K. Chen, T.W. Huang, P.M. Wu, Y.C. Lee, Y.L. Huang, Y.Y. Chu, D.C. Yan, M.K. Wu, PNAS, 105, 38, 14262-14264 (2008).
[10] S. Medvedev, T. M. McQueen, I. A. Troyan, T. Palasyuk, M. I. Eremets, R. J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G.Wortmann and C. Felser, NATURE MATERIALS, 8, 630-663 (2009).
[11] Dirk van Delft, Peter Kes, American Institude of Physics, S-0031-9228-1009-020-4 (2010).
[12] J. E. Kunzler, E. Buehler, F. S. L. Hsu, and J. H. Wernick, Physical Review Letters, 6, 3 (1961).
[13] B. T. Matthias, T. H. Geballe, R. H. Willens, E. Corenzwit, G. W. Hull, Physical Review, 139, 1501-1503 (1965).
[14] David Larbalestier, Alex Gurevich, D. Matthew Feldmann, Anatoly Polyanskii, Nature, 414, 15 (2001).
[15] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev., 108, 1175 (1957).
[16] A. Schilling, M. Cantoni, J. D. Guo, H. R. Ott, Nature, 363 , 56-58 (1993).
[17] Yoichi Kamihara, Hidenori Hiramatsu, Masahiro Hirano, Ryuto Kawamura, Hiroshi Yanagi, Toshio Kamiya, Hideo Hosono, J. AM. CHEM. SOC., 128, 10012-10013 (2006).
[18] J. W. Lynn, P. Dai, Physica C, 469, 9-12, 469-476 (2009).
[19] 吳茂昆,“鐵基(Iron-based)超導體的發展”, 中央研究院周報, 1200期, (2008).
[20] 李世亮,戴鹏程,“鐵基超導體中的長程反鐵磁序”, 中國科技核心期刊, 9期, 38卷, (2009).
[21] 吳茂昆,“超導物理新發展─鐵基超導體的興起”, 物理雙月刊, 6 期, 31卷, (2009).
[22] M.K. Wu, F.C. Hsu, K.W. Yeh, T.W. Huang, J.Y. Luo, M.J. Wang, H.H. Chang, T.K. Chen, S.M. Rao, B.H. Mok, C.L. Chen, Y.L. Huang, C.T. Ke, P.M. Wu, A.M. Chang, C.T. Wu, T.P. Perng, Physica C, 469, 340-349 (2009).
[23] T. W. Huang, T. K. Chen, K. W. Yeh, C. T. Ke, C. L. Chen, Y. L. Huang, F. C. Hsu, M. K. Wu, P. M. Wu, M. Avdeev, and A. J. Studer, Condensed Matter, arXiv:0907.4001v1 (2009).
[24] A J Williams, T M McQueen, V Ksenofontov, C Felser and R J Cava, J. Phys.: Condens. Matter, 21, 305701 (2009).
[25] Yoshikazu Mizuguchi, Fumiaki Tomioka, Shunsuke Tsuda, Takahide Yamaguchi, Yoshihiko Takano, Appl. Phys. Lett., 93, 13, 152505 (2008).
[26] S. Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayama, T. Nakagawa, M. Takata, K. Prassides, Phys. Rev. B, 80, 064506 (2008).
[27] D Braithwaite, B Salce, G Lapertot, F Bourdarot, C Marin, D Aoki and M Hanfland, J. Phys.: Condens. Matter, 21, 232202 (2009).
[28] T. M. McQueen, Q. Huang, V. Ksenofontov, C. Felser, Q. Xu, H. Zandbergen, Y. S. Hor, J. Allred, A. J. Williams, D. Qu, J. Checkelsky, N. P. Ong, and R. J. Cava, PHYSICAL REVIEW B, 79, 0014522 (2009).
[29] Leslie M. Schoop, Sergey A. Medvedev, Vadim Ksenofontov, Anthony Williams, Taras Palasyuk, Iwan A. Troyan, Jennifer Schmitt, Frederick Casper, Changhai Wang, Mikhail Eremets, R. J. Cava, and Claudia Felser, PHYSICAL REVIEW B, 84, 174505 (2011).
[30] William A. Bassett, High Pressure Research, 29, 2, 163–186 (2009).
[31] 余樹楨,“晶體之結構與性質”, 渤海堂文化公司印行, (2003).
[32] 林志明,“超高壓技術簡介─應用於半導體相變研究”, 物理雙月刊, 5期, 20卷, (1998).
[33] Charles M. Dozier and Noureddine Anibou, ISSN, 1097-0002 (2009).
[34] 林麗娟,“X光繞射原理及其應用”, 工業材料86期, 100-109 (1994).
[35] I. D. Brown, J. Res. Natl. Inst. Stand. Technol., 101, 341 (1996).
[36] A.C. Larson and R.B. Von Dreele, "General Structure Analysis System (GSAS)", Los Alamos National Laboratory Report LAUR, 86-748 (2000)
[37] L. B. McCusker, R. B. Von Dreele, D. E. Cox, D. Louër and P. Scardi, J. Appl. Cryst., 32, 36-50 (1999).