研究生: |
李政毅 Lee, Cheng-Yi |
---|---|
論文名稱: |
金奈米棒的製備改質與Tau蛋白感測應用 Synthesis and Modification of Gold Nanorods for Tau Protein Sensing |
指導教授: |
董瑞安
Doong, Ruey-An |
口試委員: |
孫毓璋
Sun, Yuh-Chan 黃志清 Huang, Chih-Ching 黃郁棻 Huang, Yu-Fen |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 145 |
中文關鍵詞: | 金奈米棒 、表面電漿共振 、生物感測器 、Tau蛋白 |
外文關鍵詞: | gold nanorods, surface plasmon resonance, biosensor, Tau protein |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金奈米顆粒在近年來備受關注的應用為生物感測技術開發應用,金奈米顆粒的光學性質能隨著不同的大小、形貌、組成、結構、及微環境而改變,也照成表面電漿共振 (surface plasmon resonance, SPR) 吸收波長的改變,因而造成金奈米顆粒的顏色的改變,而成為比色法生物感測的應用原理。而這類分析方法因為不需仰賴貴重儀器而有潛力能為簡單易用低成本的分析方法。
本研究選用表面電漿共振調控範圍最大的金奈米棒來進行Tau蛋白生物感測的應用,成功利用兩步驟合成法與本實驗改良的一步驟成長法,利用穿透式電子顯微鏡影像確認金奈米棒長約50 nm、寬約15 nm、可見光-近紅外光吸收光譜觀察到長軸吸收峰在800 nm,精簡傳統的晶種溶液合成的步驟而能經濟地合成金奈米棒。在參數探討方面,硝酸銀濃度在100至120 M時可合成出具最佳品質的金奈米棒。成長溶液中的晶種濃度的差異主要是影響金奈米棒短軸的過成長程度,較高的金前驅物對晶種濃度有較長的短軸長度。而在時間參數比較了在兩步驟成長法與一步驟成長法在初始的差異,發現一步驟成長法在硼氫化鈉水溶液添加之後約15分鐘開始觀察到金奈米棒明顯地成長,與兩步驟成長法一加入金晶種溶液立即成長之反應機制有所不同。而在金奈米棒長時間的光譜演化中發現過量的抗壞血酸會抑制藍位移的現象。金奈米的應用關鍵步驟為金奈米棒的表面修飾,在此利用FT-IR、XPS與表面電位(Zeta potential)比較了 11-巰基十一酸(11-Mercaptoundecanoic acid, MUA)與胱胺(cystamine)和二硫代琥珀酰亞胺基丙酸酯 (dithiobis[succinimidylpropionate], DSP)的修飾結果。最後修飾anti-Tau抗體對Tau蛋白進行感測實驗,探討金奈米棒邊對邊(side-by-side)與頭接尾(end-to-end)結合組裝時對表面電漿共振吸收光譜的差異。
Gold nanoparticles (AuNPs) have been attracted much attention over the past decades because they have a wild variety of applications in biological sensing. Depending on their size, shape, composition, structure, and local environment, AuNPs can show different characteristics especially the surface plasmon resonance (SPR) property. SPR can observe the color changed that reflect the underlying coherent oscillations of conduction band electrons of particle under the irradiation with the light of fitting wavelengths. These electrons (plasmons) bring the different intensities of absorption and scattering of light, and from the basis to design many biological sensing applications of AuNPs.
In this study, Au nanorods was synthesized using a simple and low cost method and then were used for biosensing applications because the morphology of Au nanarods have the wide SPR absorption range which can be adjust by aspect ratio. We have successfully developed one-step growth method to improve the efficiency of Au nanorods by comparison with traditional two-step growth method. The average diameter of gold nanorods was 50 nm in length and 15 nm in wide, which was confirmed by TEM images, and the SPR absorption position was located 800 nm. Without the seed solution synthesis step, we can more efficiently and greenly to prepare gold nanorods solution. In addition, several parameters were selected to optimize the growth of Au nanorods. We found that silver nitrate (AgNO3) of 100~120 M could fabricate good morphology for gold nanorods growth solution. The Au seed concentration of growth solution is related to the overgrowth process and the short axis of Au nanorods increased with the increase in gold precursor to seed ratio from 208 to 13333. In contrast to the two-step growth method which the gold nanorods appeared just after the addition of Au seed solution, one-step growth method needed to wait 15 minutes for nuclei formation. In addition, high concentration of ascorbic acid can inhibit blue-shift of Au nanorods. After the optimization, Au nanorods were surface modified with several organics for Tau protein detection. Results of FT-IR, XPS and Zeta potential identified that 11-Mercaptoundecanoic acid, cystamine, and dithiobis[succinimidylpropionate] ( DSP) can be used as the modifiers for Tau protein detection. Later, we used linker to modify anti-Tau antibody for Tau protein sensing and the influence of end-to-end and side-by-side aggression of Au nanorods on how the sensitivity of Tau protein detection was evaluated.
1. Faraday, M., The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light. Philosophical Transactions of the Royal Society of London 1857, 147, 145-181.
2. Turkevich, J.; Stevenson, P. C.; Hillier, J., A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. Discuss. Faraday Soc. 1951, (11), 55-75.
3. Brookmeyer, R.; Johnson, E.; Ziegler-Graham, K.; Arrighi, H. M., Forecasting the global burden of Alzheimer's disease. Alzheimers Dement. 2007, 3 (3), 186-191.
4. Barnard, A. S.; Young, N. P.; Kirkland, A. I.; van Huis, M. A.; Xu, H. F., Nanogold: A Quantitative Phase Map. ACS Nano 2009, 3 (6), 1431-1436.
5. Caswell, K. K.; Wilson, J. N.; Bunz, U. H. F.; Murphy, C. J., Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors. J. Am. Chem. Soc. 2003, 125 (46), 13914-13915.
6. Pan, B. F.; Ao, L. M.; Gao, F.; Tian, H. Y.; He, R.; Cui, D. X., End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization. Nanotechnology 2005, 16 (9), 1776-1780.
7. Wang, Y.; Li, Y. F.; Wang, J.; Sang, Y.; Huang, C. Z., End-to-end assembly of gold nanorods by means of oligonucleotide-mercury(II) molecular recognition. Chem. Commun. 2010, 46 (8), 1332-1334.
8. Fava, D.; Nie, Z.; Winnik, M. A.; Kumacheva, E., Evolution of Self-Assembled Structures of Polymer-Terminated Gold Nanorods in Selective Solvents. Adv. Mater. 2008, 20 (22), 4318-4322.
9. Wang, Y.; DePrince, A. E.; Gray, S. K.; Lin, X. M.; Pelton, M., Solvent-Mediated End-to-End Assembly of Gold Nanorods. J. Phys. Chem. Lett. 2010, 1 (18), 2692-2698.
10. Park, H. S.; Agarwal, A.; Kotov, N. A.; Lavrentovich, O. D., Controllable Side-by-Side and End-to-End Assembly of Au Nanorods by Lyotropic Chromonic Materials. Langmuir 2008, 24 (24), 13833-13837.
11. Sreeprasad, T. S.; Pradeep, T., Reversible Assembly and Disassembly of Gold Nanorods Induced by EDTA and Its Application in SERS Tuning. Langmuir 2011, 27 (7), 3381-3390.
12. Jiang, W.; Kim, B. Y. S.; Rutka, J. T.; Chan, W. C. W., Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 2008, 3 (3), 145-150.
13. Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. W., Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano. Lett. 2006, 6 (4), 662-668.
14. Ferrando, R.; Jellinek, J.; Johnston, R. L., Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008, 108 (3), 845-910.
15. Jun, Y. W.; Choi, J. S.; Cheon, J., Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew. Chem. Int. Ed. 2006, 45 (21), 3414-3439.
16. Orendorff, C. J.; Gole, A.; Sau, T. K.; Murphy, C. J., Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence. Anal. Chem. 2005, 77 (10), 3261-3266.
17. Sun, Y. G.; Xia, Y. N., Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst 2003, 128 (6), 686-691.
18. Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A., Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128 (6), 2115-2120.
19. Henglein, A.; Giersig, M., Formation of colloidal silver nanoparticles: Capping action of citrate. J. Phys. Chem. B 1999, 103 (44), 9533-9539.
20. Mahmoud, M. A.; El-Sayed, M. A., Different Plasmon Sensing Behavior of Silver and Gold Nanorods. J. Phys. Chem. Lett. 2013, 4 (9), 1541-1545.
21. Xiang, Y. U.; Wu, X. C.; Liu, D. F.; Li, Z. Y.; Chu, W. G.; Feng, L. L.; Zhang, K.; Zhou, W. Y.; Xie, S. S., Gold nanorod-seeded growth of silver nanostructures: From homogeneous coating to anisotropic coating. Langmuir 2008, 24 (7), 3465-3470.
22. Frens, G., Controlled Nucleation for Regulation of Particle-Size in Monodisperse Gold Suspensions. Nature-Phys. Sci. 1973, 241 (105), 20-22.
23. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R., Synthesis of Thiol-Derivatized Gold Nanoparticles in a 2-Phase Liquid-Liquid System. J. Chem. Soc. Chem. Comm. 1994, (7), 801-802.
24. Jana, N. R.; Gearheart, L.; Murphy, C. J., Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem. Mater. 2001, 13 (7), 2313-2322.
25. Bastus, N. G.; Comenge, J.; Puntes, V., Kinetically Controlled Seeded Growth Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 nm: Size Focusing versus Ostwald Ripening. Langmuir 2011, 27 (17), 11098-11105.
26. Fievet, F.; Lagier, J. P.; Blin, B.; Beaudoin, B.; Figlarz, M., Homogeneous and Heterogeneous Nucleations in the Polyol Process for the Preparation of Micron and Sub-Micron Size Metal Particles. Solid State Ionics 1989, 32-3, 198-205.
27. Kim, F.; Connor, S.; Song, H.; Kuykendall, T.; Yang, P. D., Platonic gold nanocrystals. Angew Chem Int Edit 2004, 43 (28), 3673-3677.
28. Tsuji, M.; Hashimoto, M.; Nishizawa, Y.; Tsuji, T., Synthesis of gold nanorods and nanowires by a microwave-polyol method. Mater. Lett. 2004, 58 (17-18), 2326-2330.
29. Zhou, Y.; Wang, C. Y.; Zhu, Y. R.; Chen, Z. Y., A novel ultraviolet irradiation technique for shape-controlled synthesis of gold nanoparticles at room temperature. Chem. Mater. 1999, 11 (9), 2310-2312.
30. Sau, T. K.; Pal, A.; Jana, N. R.; Wang, Z. L.; Pal, T., Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles. J. Nanopart. Res. 2001, 3 (4), 257-261.
31. Grieser, F., Sonochemistry in colloidal systems. Stud. Surf. Sci. Catal. 1997, 103, 57-77.
32. Reed, J. A.; Cook, A.; Halaas, D. J.; Parazzoli, P.; Robinson, A.; Matula, T. J.; Grieser, F., The effects of microgravity on nanoparticle size distributions generated by the ultrasonic reduction of an aqueous gold-chloride solution. Ultrason. Sonochem. 2003, 10 (4-5), 285-289.
33. Brown, K. R.; Walter, D. G.; Natan, M. J., Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape. Chem. Mater. 2000, 12 (2), 306-313.
34. Jana, N. R.; Gearheart, L.; Murphy, C. J., Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater. 2001, 13 (18), 1389-1393.
35. Jana, N. R.; Gearheart, L.; Murphy, C. J., Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 2001, 105 (19), 4065-4067.
36. Nikoobakht, B.; El-Sayed, M. A., Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15 (10), 1957-1962.
37. Sau, T. K.; Murphy, C. J., Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc. 2004, 126 (28), 8648-8649.
38. Liu, M. Z.; Guyot-Sionnest, P., Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J. Phys. Chem. B. 2005, 109 (47), 22192-22200.
39. Chen, H. M.; Liu, R. S.; Tsai, D. P., A Versatile Route to the Controlled Synthesis of Gold Nanostructures. Cryst. Growth Des. 2009, 9 (5), 2079-2087.
40. Jiao, Z. B.; Xia, H. B.; Tao, X. T., Modulation of Localized Surface Plasmon Resonance of Nanostructured Gold Crystals by Tuning Their Tip Curvature with Assistance of Iodide and Silver(I) Ions. J. Phys. Chem. C 2011, 115 (16), 7887-7895.
41. Miranda, O. R.; Dollahon, N. R.; Ahmadi, T. S., Critical concentrations and role of ascorbic acid (vitamin C) in the crystallization of gold nanorods within hexadecyltrimethyl ammonium bromide (CTAB)/tetraoctyl ammonium bromide (TOAB) micelles. Cryst. Growth Des. 2006, 6 (12), 2747-2753.
42. Zijlstra, P.; Bullen, C.; Chon, J. W. M.; Gu, M., High-temperature seedless synthesis of gold nanorods. J. Phys. Chem. B 2006, 110 (39), 19315-19318.
43. Bullen, C.; Zijlstra, P.; Bakker, E.; Gu, M.; Raston, C., Chemical Kinetics of Gold Nanorod Growth in Aqueous CTAB Solutions. Cryst Growth Des. 2011, 11 (8), 3375-3380.
44. Wu, H. Y.; Chu, H. C.; Kuo, T. J.; Kuo, C. L.; Huang, M. H., Seed-mediated synthesis of high aspect ratio gold nanorods with nitric acid. Chem. Mater. 2005, 17 (25), 6447-6451.
45. Wu, H. Y.; Huang, W. L.; Huang, M. H., Direct high-yield synthesis of high aspect ratio gold nanorods. Cryst. Growth Des. 2007, 7 (4), 831-835.
46. Wang, J.; Li, Y. F.; Huang, C. Z., Identification of iodine-induced morphological transformation of gold nanorods. J. Phys. Chem. C 2008, 112 (31), 11691-11695.
47. Keul, H. A.; Moller, M.; Bockstaller, M. R., Structural evolution of gold nanorods during controlled secondary growth. Langmuir 2007, 23 (20), 10307-10315.
48. Ni, W.; Kou, X.; Yang, Z.; Wang, J. F., Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. ACS Nano 2008, 2 (4), 677-686.
49. Xiang, Y. J.; Wu, X. C.; Liu, D. F.; Feng, L. L.; Zhang, K.; Chu, W. G.; Zhou, W. Y.; Xie, S. S., Tuning the morphology of gold nanocrystals by switching the growth of {110} facets from restriction to preference. J. Phys. Chem. C 2008, 112 (9), 3203-3208.
50. Sohn, K.; Kim, F.; Pradel, K. C.; Wu, J. S.; Peng, Y.; Zhou, F. M.; Huang, J. X., Construction of Evolutionary Tree for Morphological Engineering of Nanoparticles. Acs Nano 2009, 3 (8), 2191-2198.
51. Edgar, J. A.; McDonagh, A. M.; Cortie, M. B., Formation of Gold Nanorods by a Stochastic "Popcorn" Mechanism. ACS Nano 2012, 6 (2), 1116-1125.
52. Carbo-Argibay, E.; Rodriguez-Gonzalez, B.; Gomez-Grana, S.; Guerrero-Martinez, A.; Pastoriza-Santos, I.; Perez-Juste, J.; Liz-Marzan, L. M., The Crystalline Structure of Gold Nanorods Revisited: Evidence for Higher-Index Lateral Facets. Angew Chem. Int. Ed. 2010, 49 (49), 9397-9400.
53. Katz-Boon, H.; Rossouw, C. J.; Weyland, M.; Funston, A. M.; Mulvaney, P.; Etheridge, J., Three-Dimensional Morphology and Crystallography of Gold Nanorods. Nano. Lett. 2011, 11 (1), 273-278.
54. Hubert, F.; Testard, F.; Thill, A.; Kong, Q.; Tache, O.; Spalla, O., Growth and Overgrowth of Concentrated Gold Nanorods: Time Resolved SAXS and XANES. Cryst Growth Des 2012, 12 (3), 1548-1555.
55. Wang, Z. L.; Mohamed, M. B.; Link, S.; El-Sayed, M. A., Crystallographic facets and shapes of gold nanorods of different aspect ratios. Surf. Sci. 1999, 440 (1-2), L809-L814.
56. Woehrle, G. H.; Brown, L. O.; Hutchison, J. E., Thiol-functionalized, 1.5-nm gold nanoparticles through ligand exchange reactions: Scope and mechanism of ligand exchange. J. Am. Chem. Soc. 2005, 127 (7), 2172-2183.
57. Kanaras, A. G.; Kamounah, F. S.; Schaumburg, K.; Kiely, C. J.; Brust, M., Thioalkylated tetraethylene glycol: a new ligand for water soluble monolayer protected gold clusters. Chem. Commun. 2002, (20), 2294-2295.
58. Nam, J.; Won, N.; Jin, H.; Chung, H.; Kim, S., pH-Induced Aggregation of Gold Nanoparticles for Photothermal Cancer Therapy. J. Am. Chem. Soc. 2009, 131 (38), 13639-13645.
59. Ferhan, A. R.; Guo, L. H.; Kim, D. H., Influence of Ionic Strength and Surfactant Concentration on Electrostatic Surfacial Assembly of Cetyltrimethylammonium Bromide-Capped Gold Nanorods on Fully Immersed Glass. Langmuir 2010, 26 (14), 12433-12442.
60. Kah, J. C. Y.; Zubieta, A.; Saavedra, R. A.; Hamad-Schifferli, K., Stability of Gold Nanorods Passivated with Amphiphilic Ligands. Langmuir 2012, 28 (24), 8834-8844.
61. Erathodiyil, N.; Ying, J. Y., Functionalization of Inorganic Nanoparticles for Bioimaging Applications. Accounts Chem. Res. 2011, 44 (10), 925-935.
62. Sam, S.; Touahir, L.; Andresa, J. S.; Allongue, P.; Chazalviel, J. N.; Gouget-Laemmel, A. C.; de Villeneuve, C. H.; Moraillon, A.; Ozanam, F.; Gabouze, N.; Djebbar, S., Semiquantitative Study of the EDC/NHS Activation of Acid Terminal Groups at Modified Porous Silicon Surfaces. Langmuir 2010, 26 (2), 809-814.
63. Wang, C.; Yan, Q.; Liu, H. B.; Zhou, X. H.; Xiao, S. J., Different EDC/NHS Activation Mechanisms between PAA and PMAA Brushes and the Following Amidation Reactions. Langmuir 2011, 27 (19), 12058-12068.
64. Algar, W. R.; Prasuhn, D. E.; Stewart, M. H.; Jennings, T. L.; Blanco-Canosa, J. B.; Dawson, P. E.; Medintz, I. L., The Controlled Display of Biomolecules on Nanoparticles: A Challenge Suited to Bioorthogonal Chemistry. Bioconjugate Chem. 2011, 22 (5), 825-858.
65. Schoeler, B.; Poptoschev, E.; Caruso, F., Growth of multilayer films of fixed and variable charge density polyelectrolytes: Effect of mutual charge and secondary interactions. Macromolecules 2003, 36 (14), 5258-5264.
66. Green, N. M., Avidin .1. Use of [14c]Biotin for Kinetic Studies and for Assay. Biochem. J. 1963, 89 (3), 585-591.
67. Salant, A.; Amitay-Sadovsky, E.; Banin, U., Directed self-assembly of gold-tipped CdSe nanorods. J. Am. Chem. Soc. 2006, 128 (31), 10006-10007.
68. Green, N. M., Avidin. Adv. Protein Chem. 1975, 29, 85-133.
69. Hostetler, M. J.; Templeton, A. C.; Murray, R. W., Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir 1999, 15 (11), 3782-3789.
70. Barreira, S. V. P.; Silva, F., Surface modification chemistry based on the electrostatic adsorption of poly-L-arginine onto alkanethiol modified gold surfaces. Langmuir 2003, 19 (24), 10324-10331.
71. You, J.; Zhang, G. D.; Li, C., Exceptionally High Payload of Doxorubicin in Hollow Gold Nanospheres for Near-Infrared Light-Triggered Drug Release. ACS Nano 2010, 4 (2), 1033-1041.
72. Schneider, G.; Decher, G., From functional core/shell nanoparticles prepared via layer-by-layer deposition to empty nanospheres. Nano Lett. 2004, 4 (10), 1833-1839.
73. Liz-Marzan, L. M.; Giersig, M.; Mulvaney, P., Synthesis of nanosized gold-silica core-shell particles. Langmuir 1996, 12 (18), 4329-4335.
74. Templeton, A. C.; Hostetler, M. J.; Kraft, C. T.; Murray, R. W., Reactivity of monolayer-protected gold cluster molecules: Steric effects. J. Am. Chem. Soc. 1998, 120 (8), 1906-1911.
75. Assoc, A., 2012 Alzheimer's disease facts and figures. Alzheimers Dement. 2012, 8 (2), 131-168.
76. McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E. M., Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984, 34 (7), 939-44.
77. Klunk, W. E.; Engler, H.; Nordberg, A.; Wang, Y. M.; Blomqvist, G.; Holt, D. P.; Bergstrom, M.; Savitcheva, I.; Huang, G. F.; Estrada, S.; Ausen, B.; Debnath, M. L.; Barletta, J.; Price, J. C.; Sandell, J.; Lopresti, B. J.; Wall, A.; Koivisto, P.; Antoni, G.; Mathis, C. A.; Langstrom, B., Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann. Neurol. 2004, 55 (3), 306-319.
78. Yousefi, B. H.; Manook, A.; Drzezga, A.; Reutern, B. V.; Schwaiger, M.; Wester, H. J.; Henriksen, G., Synthesis and Evaluation of C-11-Labeled Imidazo[2,1-b]benzothiazoles (IBTs) as PET Tracers for Imaging beta-Amyloid Plaques in Alzheimer's Disease. J. Med. Chem. 2011, 54 (4), 949-956.
79. Mulder, C.; Scheltens, P.; Visser, J. J.; van Kamp, G. J.; Schutgens, R. B. H., Genetic and biochemical markers for Alzheimer's disease: recent developments. Ann. Clin. Biochem. 2000, 37, 593-607.
80. Mulder, C.; Schoonenboom, S. N. M.; Wahlund, L. O.; Scheltens, P.; van Kamp, G. J.; Veerhuis, R.; Hack, C. E.; Blomberg, M.; Schutgens, R. B. H.; Eikelenboom, P., CSF markers related to pathogenetic mechanisms in Alzheimer's disease. J. Neural. Transm. 2002, 109 (12), 1491-1498.
81. Huhmer, A. F.; Biringer, R. G.; Amato, H.; Fonteh, A. N.; Harrington, M. G., Protein analysis in human cerebrospinal fluid: Physiological aspects, current progress and future challenges. Disease markers 2006, 22 (1-2), 3-26.
82. Hanisch, K.; Soininen, H.; Alafuzoff, I.; Hoffmann, R., Analysis of human tau in cerebrospinal fluid. Journal of proteome research 2010, 9 (3), 1476-82.
83. Ballatore, C.; Lee, V. M. Y.; Trojanowski, J. Q., Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat. Rev. Neurosci. 2007, 8 (9), 663-672.
84. von Bergen, M.; Friedhoff, P.; Biernat, J.; Heberle, J.; Mandelkow, E. M.; Mandelkow, E., Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif (306VQIVYK311) forming beta structure. P. Natl. Acad. Sci. USA 2000, 97 (10), 5129-5134.
85. Ballatore, C.; Brunden, K. R.; Huryn, D. M.; Trojanowski, J. Q.; Lee, V. M. Y.; Smith, A. B., Microtubule Stabilizing Agents as Potential Treatment for Alzheimer's Disease and Related Neurodegenerative Tauopathies. J. Med. Chem. 2012, 55 (21), 8979-8996.
86. Buee, L.; Bussiere, T.; Buee-Scherrer, V.; Delacourte, A.; Hof, P. R., Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Rev. 2000, 33 (1), 95-130.
87. Iqbal, K.; Liu, F.; Gong, C. X.; Alonso, A. D.; Grundke-Iqbal, I., Mechanisms of tau-induced neurodegeneration. Acta Neuropathol. 2009, 118 (1), 53-69.
88. Arai, H.; Terajima, M.; Miura, M.; Higuchi, S.; Muramatsu, T.; Machida, N.; Seiki, H.; Takase, S.; Clark, C. M.; Lee, V. M.; et al., Tau in cerebrospinal fluid: a potential diagnostic marker in Alzheimer's disease. Ann. Neurol. 1995, 38 (4), 649-52.
89. Vandermeeren, M.; Mercken, M.; Vanmechelen, E.; Six, J.; Vandevoorde, A.; Martin, J. J.; Cras, P., Detection of Tau Proteins in Normal and Alzheimers-Disease Cerebrospinal-Fluid with a Sensitive Sandwich Enzyme-Linked-Immunosorbent- Assay. J. Neurochem. 1993, 61 (5), 1828-1834.
90. Andreasen, N.; Vanmechelen, E.; Van de Voorde, A.; Davidsson, P.; Hesse, C.; Tarvonen, S.; Raiha, I.; Sourander, L.; Winblad, B.; Blennow, K., Cerebrospinal fluid tau protein as a biochemical marker for Alzheimer's disease: a community based follow up study. J. Neurol. Neurosur. Ps. 1998, 64 (3), 298-305.
91. Buerger, K.; Ewers, M.; Pirttila, T.; Zinkowski, R.; Alafuzoff, I.; Teipel, S. J.; DeBernardis, J.; Kerkman, D.; McCulloch, C.; Soininen, H.; Hampel, H., CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer's disease. Brain 2006, 129, 3035-3041.
92. Lu, W. T.; Arumugam, R.; Senapati, D.; Singh, A. K.; Arbneshi, T.; Khan, S. A.; Yu, H. T.; Ray, P. C., Multifunctional Oval-Shaped Gold-Nanoparticle-Based Selective Detection of Breast Cancer Cells Using Simple Colorimetric and Highly Sensitive Two-Photon Scattering Assay. ACS Nano 2010, 4 (3), 1739-1749.
93. Medley, C. D.; Smith, J. E.; Tang, Z.; Wu, Y.; Bamrungsap, S.; Tan, W. H., Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal. Chem. 2008, 80 (4), 1067-1072.
94. He, H.; Xie, C.; Ren, J., Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging. Anal. Chem. 2008, 80 (15), 5951-5957.
95. Wu, P.; Gao, Y.; Zhang, H.; Cai, C. X., Aptamer-Guided Silver-Gold Bimetallic Nanostructures with Highly Active Surface-Enhanced Raman Scattering for Specific Detection and Near-Infrared Photothermal Therapy of Human Breast Cancer Cells. Anal. Chem. 2012, 84 (18), 7692-7699.
96. Song, J. B.; Zhou, J. J.; Duan, H. W., Self-Assembled Plasmonic Vesicles of SERS-Encoded Amphiphilic Gold Nanoparticles for Cancer Cell Targeting and Traceable Intracellular Drug Delivery. J. Am. Chem. Soc. 2012, 134 (32), 13458-13469.
97. Liu, X.; Dai, Q.; Austin, L.; Coutts, J.; Knowles, G.; Zou, J. H.; Chen, H.; Huo, Q., A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J. Am. Chem. Soc. 2008, 130 (9), 2780-2782.
98. Vestergaard, M.; Kerman, K.; Kim, D. K.; Hiep, H. M.; Tamiya, E., Detection of Alzheimer's tau protein using localised surface plasmon resonance-based immunochip. Talanta 2008, 74 (4), 1038-1042.
99. Neely, A.; Perry, C.; Varisli, B.; Singh, A. K.; Arbneshi, T.; Senapati, D.; Kalluri, J. R.; Ray, P. C., Ultrasensitive and Highly Selective Detection of Alzheimer's Disease Biomarker Using Two-Photon Rayleigh Scattering Properties of Gold Nanoparticle. ACS Nano 2009, 3 (9), 2834-2840.
100. Rai, A.; Singh, A.; Ahmad, A.; Sastry, M., Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir 2006, 22 (2), 736-741.
101. Ha, T. H.; Koo, H. J.; Chung, B. H., Shape-controlled syntheses of gold nanoprisms and nanorods influenced by specific adsorption of halide ions. J. Phys. Chem. C 2007, 111 (3), 1123-1130.
102. Langille, M. R.; Personick, M. L.; Zhang, J.; Mirkin, C. A., Defining Rules for the Shape Evolution of Gold Nanoparticles. J. Am. Chem. Soc. 2012, 134 (35), 14542-14554.
103. Mohamed, M. B.; Ismail, K. Z.; Link, S.; El-Sayed, M. A., Thermal reshaping of gold nanorods in micelles. J. Phys. Chem. B 1998, 102 (47), 9370-9374.
104. Coates, J., Interpretation of Infrared Spectra, A Practical Approach. John Wiley & Sons Ltd: Chichester, 2000; p 10815-10837.
105. Bourg, M. C.; Badia, A.; Lennox, R. B., Gold-sulfur bonding in 2D and 3D self-assembled monolayers: XPS characterization. J. Phys. Chem. B 2000, 104 (28), 6562-6567.
106. Yam, C. M.; Pradier, C. M.; Salmain, M.; Marcus, P.; Jaouen, G., Binding of biotin to gold surfaces functionalized by self-assembled monolayers of cystamine and cysteamine: Combined FT-IRRAS and XPS characterization. J. Colloid Interf. Sci .2001, 235 (1), 183-189.
107. Cavalleri, O.; Gonella, G.; Terreni, S.; Vignolo, M.; Pelori, P.; Floreano, L.; Morgante, A.; Canepa, M.; Rolandi, R., High resolution XPS of the S 2p core level region of the L-cysteine/gold interface. J. Phys-Condens. Mat. 2004, 16 (26), S2477-S2482.
108. Castner, D. G.; Hinds, K.; Grainger, D. W., X-ray photoelectron spectroscopy sulfur 2p study of organic thiol and disulfide binding interactions with gold surfaces. Langmuir 1996, 12 (21), 5083-5086.
109. Wang, C.; Irudayaraj, J., Gold Nanorod Probes for the Detection of Multiple Pathogens. Small 2008, 4 (12), 2204-2208.
110. Xia, X. H.; Yang, M. X.; Wang, Y. C.; Zheng, Y. Q.; Li, Q. G.; Chen, J. Y.; Xia, Y. N., Quantifying the Coverage Density of Poly(ethylene glycol) Chains on the Surface of Gold Nanostructures. ACS Nano 2012, 6 (1), 512-522.
111. Ye, X. C.; Zheng, C.; Chen, J.; Gao, Y. Z.; Murray, C. B., Using Binary Surfactant Mixtures To Simultaneously Improve the Dimensional Tunability and Monodispersity in the Seeded Growth of Gold Nanorods. Nano Lett. 2013, 13 (2), 765-771.
112. Ye, X. C.; Gao, Y. Z.; Chen, J.; Reifsnyder, D. C.; Zheng, C.; Murray, C. B., Seeded Growth of Monodisperse Gold Nanorods Using Bromide-Free Surfactant Mixtures. Nano Lett. 2013, 13 (5), 2163-2171.
113. Vigderman, L.; Zubarev, E. R., High-Yield Synthesis of Gold Nanorods with Longitudinal SPR Peak Greater than 1200 nm Using Hydroquinone as a Reducing Agent. Chem. Mater. 2013, 25 (8), 1450-1457.
114. Park, K.; Drummy, L. F.; Wadams, R. C.; Koerner, H.; Nepal, D.; Fabris, L.; Vaia, R. A., Growth Mechanism of Gold Nanorods. Chem. Mater. 2013, 25 (4), 555-563.