研究生: |
王曉萍 Hsiao-Ping Wang |
---|---|
論文名稱: |
大氣電漿束之特性分析 Characterization of an atmospheric pressure plasma jet |
指導教授: |
寇崇善
Chwung-Shan Kou |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 大氣電漿束 、灰化 |
外文關鍵詞: | atmospheric pressure plasma jet/APPJ, ashing |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大氣電漿束克服了在大氣中激發電漿所面臨的高溫、低均勻度及容易造成電弧等問題,因此在材料的應用上比一般大氣電漿源具有其一定優勢。本研究的主要重點在瞭解大氣電漿束的基本特性,包括對電漿密度及活化粒子的分析等。實驗通以氦氣、氬氣及少量的氧氣為研究主軸。實驗結果發現,APPJ激發的電漿密度高達 ,且電漿中的活化種類以原子自由基(radical)為主。另外,在材料的應用方面,利用電漿的活化種類特性,選擇將光阻塗佈於矽晶片上進行研究,發現電漿的灰化率可高達2.26 m/min。
[1] H. Schmid, B. Kegel, W. Petasch, and G. Liebel, □Low pressure plasma processing in microelectronics,□ in Proc. Joint 24th Int. Conf. Microelectronics (MIEL) and 32nd Symp. Devices Materials SD'96, Nova Gorcia, Slovenia, 1996, pp. 17-35
[2] P. Fauchais and A. Vardelle, □Thermal plasmas,□ IEEE Trans. Plasma Sci., vol. 25, pp. 1258-1280, Dec. 1997.
[3] M. Goldman and R. S. Sigmond, □Corona and insulation,□ IEEE Trans. Elect. Insulation., vol. EI-17, no. 2, pp. 90-105, 1982.
[4] J. S. Chang, P. A. Lawless, and T. Yamamoto, □Corona discharge processes,□ IEEE Trans. Plasma Sci., vol. 19, pp. 1152-1166, Dec. 1991.
[5] B. Emission and U. Kogelschatz,□Modeling and application of silent discharge plasmas,□ IEEE Trans. Plasma Sci. vol., 19, pp. 309-323, Apr. 1991.
[6] J. Y. Jeong, S. E. Babayan, V. J. Tu, J. Park, R. F. Hicks, and G. S. Selwyn, □Etching materials with an atmospheric pressure plasma jet,□ Plasma Source Sci. Technol., vol. 7, no. 3, pp. 282-285, 1998.
[7] J. Y. Jeong, S. E. Babayan, A. , V. J. Tu, J. Park, et al. □Etching polyimide with a nonequilibrium atmospheric pressure plasma jet,□ J. Vac. Sci. Technol. A., vol. 17, no. 5, pp. 2581-2585, Sep./Oct. 1999.
[8] S. E. Babayan, J. Y. Jeong, V. J. Tu, J. Park, G. S. Selwyn, and R. F. Hicks, □Deposition of silicon dioxide films with an atmospheric pressure plasma jet,□ Plasma Source Sci. Technol., vol. 7, no. 3, pp. 286-288, 1998.
[9] W. Elenbass, The High Pressure Mercury Vapor Discharge. Amsterdam, The Netherlands: North-Holland, 1951.
[10] Michael A. Lieberman, Allan J. Lichtenberg, Principles of Plasma Discharges and Materials Processing.
[11] Francis F. Chen, Introduction to Plasma Physics.
[12] Yuri P. Raizer, Gas Discharge Physics.
[13] A. , J. Y. Jeong, et al., □The atmospheric-pressure plasma jet: A review and comparison to other plasma sources,□ IEEE Trans. Plasma Sci. vol. 26, p. 1685, Dec. 1998.
[14] G. S. Selwyn, H. W. Herrmann, J. Park and I. Henins, □Materials processing using an atmospheric-pressure plasma jet,□ Physics Division Progress Report. 1999-2000
[15] S. Zarrabian, C. Lee, and K. H. Guenther, □Emission spectroscopy of reactive low-voltage ion plating for metal-oxide thin film,□ Applied Optics., vol. 32, no. 28, pp. 5606-5611, Oct. 1993.
[16] J. W. Coburn and M. Chen, □Optical emission spectroscopy of reactive plasmas:A method for correlating emission intensities to reactive particle density, □ J. Appl. Phys., vol. 51, no. 6, pp. 3134 -3136, Jun. 1980.
[17] R. E. Walkup, K. L. Saenger, G. S. Selwyn, □Studies of atomic oxygen in O2+CF4 rf discharges by two-photon laser-induced fluorescence and optical emission spectroscopy,□ J. Chem. Phys., vol. 84, no. 5, pp. 2668 -2674, Mar. 1986.
[18] Sheng-Wen Chen, □Study of the Characteristics of the Large Area Planar Microwave Plasma Source,□ M.S. Thesis, NTHU, Jun. 2002.