簡易檢索 / 詳目顯示

研究生: 陳品蓁
Chen, Pin-Chen
論文名稱: 利用相位對比磁振造影技術評估 馬凡氏症患者主動脈血流之螺旋現象
Evaluation of Helix in the Aortic Flow For Marfan Syndrome Patients by Phase-contrast Magnetic Resonance Imaging
指導教授: 焦傳金
Chiao, Chuan-Chin
彭旭霞
Peng, Hsu-Hsia
口試委員: 曾文毅
Tseng, Wei-Yih
邱馨慧
Chiou, Hsin-Hui
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 系統神經科學研究所
Institute of Systems Neuroscience
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 60
中文關鍵詞: 馬凡氏症核磁共振主動脈
外文關鍵詞: Marfan Syndrome, Magnetic Resonance Imaging, Aorta
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 馬凡氏症是一種因FBN1基因突變造成的結締組織病變,發生在主動脈的主動脈根部擴張、主動脈瘤、以及接著造成的主動脈剝離被認為是病人猝死的危險因子。主動脈中過多的螺旋流將會導致心臟功能異常。本篇研究的目的是透過視覺化及定量化的分析,了解有症狀的馬凡氏症患者與正常人在主動脈血流的螺旋流現象。針對十八位馬凡氏症患者 (年齡:25.0 ± 7.1 歲)及十五位年齡相當的正常受試者 (年齡:29.0 ± 10.6歲),其螺旋流現象及血流動力學參數主要是透過四維的相位對比核磁共振造影的影像達到視覺化及定量化的研究。在主動脈根的直徑及臨床評估參數(Z score)上,馬凡氏症患者 (38.9 ± 8.9毫公分; 3.4 ± 3.1)都顯著大於正常受試者(25.9 ± 4.5毫公分; -0.9 ± 1.2) ,P值小於0.001。主動脈血流的視覺化是利用商業化軟體做分析。主動脈血流的分級及馬凡氏症患者在升主動脈和主動脈弓有較大的旋轉角度都顯示出,馬凡氏症患者的血流流速較低,且有較少往前推進的血流特性。血流動力學參數,包括血流流速、旋度密度、相對旋度和縱向血管壁剪力,都顯示可以有效區分馬凡氏症患者以及健康受試者,尤其在升主動脈的部分。相對旋度在時間上及位置上的分布情形可以清楚的表示出馬凡氏症患者及健康受試者在核中心的差異,這種方式提供了未來在病人分類上一個更具前瞻性的應用。


    Marfan syndrome (MFS) is a disorder of connective tissue structure caused by a mutation in the fibrillin 1 (FBN1) gene. Aortic root dilatation, aneurysms and subsequent dissection occurring in the aorta are considered to be the risk of sudden death for patients. Increased helical flow in the aorta will result in abnormal cardiac functions. The aim of this study were to visualize and quantify helical flow in aortic flow for MFS patients compared with normal subjects. Flow patterns and hemodynamic parameters in the thoracic aorta were visualized and quantified based on time-resolved 3D phase contrast MRI with three-directional velocity encoding (4D flow MRI, temporal resolution ~40 ms, spatial resolution ~1.17 mm) in 18 patients with confirmed MFS (age = 25.0 ± 7.1 years) and in 15 age-matched normal subjects (age = 29.0 ± 10.6 years). Aortic root diameter and Z score for MFS patients (38.9 ± 8.9 mm; 3.4 ± 3.1) were significant larger than that for normal subjects (25.9 ± 4.5 mm; -0.9 ± 1.2). Visualization of aortic flow were evaluated in commercial software. The grading of aortic flow and larger rotational angles in ascending aorta and aortic arch showed that MFS patients had smaller velocity and less bifurcation characteristics for blood flow propagation. The hemodynamic parameters, including velocity, helicity density, relative helicity and axial wall shear stress, had distinguished MFS patients to normal subjects mostly in ascending aorta. Spatiotemporal distribution of relative helicity clearly showed the difference of core center between MFS patients and normal subjects, which provided promising approaches for patient managements in the future.

    1. Chapter 1 Introduction 1 1.1 Marfan syndrome (MFS) 1 1.1.1 Clinical diagnosis 1 1.1.2 Clinical treatments 2 1.2 Helix and helicity 4 1.2.1 Definition 4 1.2.2 Applications 4 1.3 Motivation and purposes 6 2. Chapter 2 Theory 7 2.1 Phase-contrast magnetic resonance image (PC-MRI) 7 2.2 4D flow MRI 9 3. Chapter 3 Materials and methods 11 3.1 Study cohort 11 3.2 Image acquisition and post-processing 12 3.3 Helix visualization 14 3.3.1 Vector field and rotational ratio 14 3.3.2 Streamline and rotational angle 15 3.4 Quantification of helix-related parameters 16 3.4.1 Velocity, helicity density, relative helicity and axial WSS 16 3.4.2 Individual helicityAED mapping and AED classification 18 3.5 Statistical analysis 21 4. Chapter 4 Results 22 4.1 Demographics of study cohorts 22 4.2 Helix visualization 22 4.2.1 Vector field and rotational ratio 22 4.2.2 Streamline and rotational angle 27 4.3 Quantification of helix-related parameters 29 4.3.1 Velocity, helicity density and relative helicity 29 4.3.2 Axial WSS 34 4.3.3 Individual helicityAED mapping and AED classification 37 4.3.4 Correlation analysis 41 5. Chapter 5 Discussion 43 5.1 Helix visualization 43 5.2 Quantification of helix-related parameters 45 5.2.1 Physiologically features of aortic flow 45 5.2.2 Relative helicity 45 5.2.3 Axial WSS 46 5.2.4 HelicityAED mapping 47 5.2.5 Correlation analysis 49 5.3 Limitations 51 6. Chapter 6 Conclusion 53 7. Chapter 7 Questions and answers 54 8. Chapter 8 References 58

    1. Dormand, H. and R.H. Mohiaddin, Cardiovascular magnetic resonance in Marfan syndrome. J Cardiovasc Magn Reson, 2013. 15: p. 33.
    2. Dean, J.C., Marfan syndrome: clinical diagnosis and management. Eur J Hum Genet, 2007. 15(7): p. 724-33.
    3. van Karnebeek, C.D., et al., Natural history of cardiovascular manifestations in Marfan syndrome. Arch Dis Child, 2001. 84(2): p. 129-37.
    4. De Paepe, A., et al., Revised diagnostic criteria for the Marfan syndrome. Am J Med Genet, 1996. 62(4): p. 417-26.
    5. Gautier, M., et al., Nomograms for aortic root diameters in children using two-dimensional echocardiography. Am J Cardiol, 2010. 105(6): p. 888-94.
    6. Keane, M.G. and R.E. Pyeritz, Medical management of Marfan syndrome. Circulation, 2008. 117(21): p. 2802-13.
    7. Kornbluth, M., et al., Clinical outcome in the Marfan syndrome with ascending aortic dilatation followed annually by echocardiography. Am J Cardiol, 1999. 84(6): p. 753-5, a9.
    8. Devereux, R.B., et al., Normal limits in relation to age, body size and gender of two-dimensional echocardiographic aortic root dimensions in persons >/=15 years of age. Am J Cardiol, 2012. 110(8): p. 1189-94.
    9. Detaint, D., et al., Cardiovascular manifestations in men and women carrying a FBN1 mutation. Eur Heart J, 2010. 31(18): p. 2223-9.
    10. Hiratzka, L.F., et al., 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: executive summary. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Catheter Cardiovasc Interv, 2010. 76(2): p. E43-86.
    11. Travis, J., Medicine. Old drug, new hope for Marfan syndrome. Science, 2006. 312(5770): p. 36-7.
    12. Shores, J., et al., Progression of aortic dilatation and the benefit of long-term beta-adrenergic blockade in Marfan's syndrome. N Engl J Med, 1994. 330(19): p. 1335-41.
    13. Patel, H.J. and G.M. Deeb, Ascending and arch aorta: pathology, natural history, and treatment. Circulation, 2008. 118(2): p. 188-95.
    14. Zierer, A., et al., Aortic enlargement and late reoperation after repair of acute type A aortic dissection. Ann Thorac Surg, 2007. 84(2): p. 479-86; discussion 486-7.
    15. Markl, M., P.J. Kilner, and T. Ebbers, Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J Cardiovasc Magn Reson, 2011. 13: p. 7.
    16. Burk, J., et al., Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR. J Cardiovasc Magn Reson, 2012. 14: p. 84.
    17. Geiger, J., et al., Aortic flow patterns in patients with Marfan syndrome assessed by flow-sensitive four-dimensional MRI. J Magn Reson Imaging, 2012. 35(3): p. 594-600.
    18. Hope, M.D., et al., Bicuspid aortic valve: four-dimensional MR evaluation of ascending aortic systolic flow patterns. Radiology, 2010. 255(1): p. 53-61.
    19. Dumoulin, C.L., Phase contrast MR angiography techniques. Magn Reson Imaging Clin N Am, 1995. 3(3): p. 399-411.
    20. Peng, H.H., et al., Estimation of pulse wave velocity in main pulmonary artery with phase contrast MRI: preliminary investigation. J Magn Reson Imaging, 2006. 24(6): p. 1303-10.
    21. Yu, H.Y., et al., Quantification of the pulse wave velocity of the descending aorta using axial velocity profiles from phase-contrast magnetic resonance imaging. Magn Reson Med, 2006. 56(4): p. 876-83.
    22. Stankovic, Z., et al., 4D flow imaging with MRI. Cardiovasc Diagn Ther, 2014. 4(2): p. 173-92.
    23. Lorenz, R., et al., 4D flow magnetic resonance imaging in bicuspid aortic valve disease demonstrates altered distribution of aortic blood flow helicity. Magn Reson Med, 2014. 71(4): p. 1542-53.
    24. Geiger, J., et al., Aortic wall shear stress in Marfan syndrome. Magn Reson Med, 2013. 70(4): p. 1137-44.
    25. Hope, T.A., et al., Evaluation of Marfan patients status post valve-sparing aortic root replacement with 4D flow. Magn Reson Imaging, 2013. 31(9): p. 1479-84.
    26. Bock, J., et al., In vivo noninvasive 4D pressure difference mapping in the human aorta: phantom comparison and application in healthy volunteers and patients. Magn Reson Med, 2011. 66(4): p. 1079-88.
    27. Dyverfeldt, P., T. Ebbers, and T. Lanne, Pulse wave velocity with 4D flow MRI: systematic differences and age-related regional vascular stiffness. Magn Reson Imaging, 2014. 32(10): p. 1266-71.
    28. Kilner, P.J., et al., Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation, 1993. 88(5 Pt 1): p. 2235-47.
    29. Hope, M.D., et al., 4D flow CMR in assessment of valve-related ascending aortic disease. JACC Cardiovasc Imaging, 2011. 4(7): p. 781-7.
    30. Chai, P. and R. Mohiaddin, How we perform cardiovascular magnetic resonance flow assessment using phase-contrast velocity mapping. J Cardiovasc Magn Reson, 2005. 7(4): p. 705-16.
    31. Bock, J., et al., 4D phase contrast MRI at 3 T: effect of standard and blood-pool contrast agents on SNR, PC-MRA, and blood flow visualization. Magn Reson Med, 2010. 63(2): p. 330-8.
    32. Walker, P.G., et al., Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. J Magn Reson Imaging, 1993. 3(3): p. 521-30.
    33. H K Moffatt, a. and A. Tsinober, Helicity in Laminar and Turbulent Flow. Annual Review of Fluid Mechanics, 1992. 24(1): p. 281-312.
    34. Stalder, A.F., et al., Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn Reson Med, 2008. 60(5): p. 1218-31.
    35. Hope, T.A., et al., Comparison of flow patterns in ascending aortic aneurysms and volunteers using four-dimensional magnetic resonance velocity mapping. J Magn Reson Imaging, 2007. 26(6): p. 1471-9.
    36. von Knobelsdorff-Brenkenhoff, F., et al., Blood flow characteristics in the ascending aorta after aortic valve replacement--a pilot study using 4D-flow MRI. Int J Cardiol, 2014. 170(3): p. 426-33.
    37. Geiger, J., et al., Longitudinal Evaluation of Aortic Hemodynamics in Marfan Syndrome: New Insights from a 4D Flow Cardiovascular Magnetic Resonance Multi-Year Follow-Up Study. J Cardiovasc Magn Reson, 2017. 19(1): p. 33.
    38. Mahadevia, R., et al., Bicuspid aortic cusp fusion morphology alters aortic three-dimensional outflow patterns, wall shear stress, and expression of aortopathy. Circulation, 2014. 129(6): p. 673-82.
    39. Querzoli, G., et al., Fluid dynamics of aortic root dilation in Marfan syndrome. J Biomech, 2014. 47(12): p. 3120-8.

    QR CODE