研究生: |
陳以諾 Chen,Yi Nuo |
---|---|
論文名稱: |
以檸檬酸添加於電鍍法中簡易製備高光電化學效率的碳包覆赤鐵礦光陽極 Facile synthesis of enhanced photoelectrochemical performance of carbon coated hematite photoelectrodes via electrodeposition with citric acid additive |
指導教授: |
王竹方
Wang Chu Fang |
口試委員: |
談駿嵩
蔣本基 王清海 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 88 |
中文關鍵詞: | 電鍍 、赤鐵礦 、水產氫 、碳包覆 、檸檬酸 |
外文關鍵詞: | electrodeposition, hematite, water splitting, carbon-coated, citric acid |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本篇利用簡易方便的電化學方法合成出一種被碳層包覆的赤鐵礦奈米結構可利用於太陽能產氫,這是首次利用電鍍方法製備出這種有碳層包覆的赤鐵礦,我們研究利用檸檬酸當作碳源去合成奈米結構的α-Fe2O3薄膜會如何影響薄膜的結構跟它的光電化學性質。首先,我們了解鐵離子跟檸檬酸間的螯合確實明顯改變了鐵錯合物種的分布相較於沒有檸檬酸添加的環境,然後在鹼性環境中電鍍時,發現檸檬酸的添加確實大大有助於光電流的增加,從電子能譜儀(XPS)發現在284 eV有強烈的碳訊號,這同時也與穿透式顯微鏡(TEM)的結果相符合,這種從cit-Fe 系統獲得的碳包覆赤鐵礦薄膜的光電流會隨著合成時的pH值上升而上升,最多可在pH8時達到2.1毫安培的光電流,電化學交流阻抗頻譜顯示出相較於沒有碳參雜的而言,這種碳參雜的薄膜具有更高的載子濃度,這也是它高度光催化性的原因,這種簡單和便宜的方法可以被輕鬆的大量製備為高效率太陽能水產氫的實際應用奠定基礎。
Abstract
Here we introduce a facile synthesis of carbon-coated hematite nanostructures for solar water splitting via a simple electrochemical methods. This is the first time the synthesis of carbon-coated hematite being reported via electrodeposition. We investigate the structure and photoelectrochemical effects of adding citric acid as carbon source to synthesize nanostructured α-Fe2O3 thin films. Firstly, we know that the chelation between ferric ions and citric acid significantly changes the distribution of ferric species in comparison with that without any citric acid additives. The addition of citric acid greatly enhanced the photocurrent when the electrodeposition was conducted in the alkaline environment. The data of XPS clearly shows a strong C signal appearing at 284 eV, which is in a good agreement with the TEM results. The photocurrent of carbon-coated hematite films obtained from cit-Fe system increases with increasing pH, reaching a maximum photocurrent around 2.1 mA at pH 8. Electrochemical impedance spectroscopy revealed that C doped films have higher donor density than that of undoped film,which is responsible for high photoactivity. The simple and cheap method could be scaled up easily which may pave the way for the practical application for efficient solar water splitting.
Chapter 6 Reference
1. Morgan D, Sissine F. Congressional Research Service, Report for Congress, The Committee for the National Institute for the Environment, Washington, DC 20006-1401, 28 April 1995.
2. Nejat Veziroglu T. Dawn of the hydrogen age, Int J Hydrogen Energy, 1998. vol.23 p.1077-1078
3. US Department of Energy, National Renewable Energy Laboratory. Hydrogen the fuel for the future,DOE=GO-1- 95-099 DE95004024, March 1995.
4. Yongjing Lin, Guangbi Yuan, Stafford Sheehan, Sa Zhou and Dunwei Wang, Hematite-based solar water splitting: challenges and opportunities, Energy Environ. Sci., 2011. vol.4 p.4862-4869.
5. Benjamin Klahr, Sixto Gimenez, Francisco Fabregat-Santiago, Juan Bisquertb and Thomas W. Hamann, Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes, Energy Environ. Sci., 2012. Vol.5 p. 7626-7636.
6. A. Fujishima, K. Honda, Electrochemical photocatalysis of water at a semiconductor electrode, Nature, 1972. vol.238 p.37-38.
7. Yat Li and Jin Zhong Zhang , Hydrogen generation from photoelectrochemical water splitting based on nanomaterials, Laser Photonics Rev., 2010. vol.4 p.517-528.
8. K. Sivula, F. Le Formal and M. Gra¨tzel, Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes. ,ChemSusChem, 2011. vol.4 p.432-449.
9. Akihiko Kudo* and Yugo Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 2009. vol.38 p.253–278.
10. T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects, Int. J. Hydrogen Energy, 2002. vol.27 p.991–1022.
11. Allen J. Bard , Marye Anne Fox, Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen, Acc. Chem. Res., 1995. vol.28 p.141.
12. Nathan S. Lewis, Sunlight can be harnessed by semiconductors to generate a fuel, hydrogen gas, from water. This approach will be impracticable until certain materialsrelated constraints are overcome: photochemists are on the case., Nature, 2001. vol.414 p.589-590.
13. T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects, Int. J. Hydrogen Energy, 2002. vol.27 p.991–1022.
14. A.B. Murphy, P.R.F. Barnes, L.K. Randeniya, I.C. Plumb, I.E. Grey, M.D. Horne, J.A. Glasscock, Efficiency of solar water splitting using semiconductor electrodes., J. Hydrogen Energy, 2006. vol.31 p.1999–2017.
15. Kevin Sivula *, Florian Le Formal and Michael Grätzel *, WO3-Fe2O3 Photoanodes for Water Splitting: A Host Scaffold, Guest Absorber Approach, M. Chem. Mater., 2009. vol.21 p.2862-2867.
16. Jeremie Brillet, Michael Gra¨tzel, and Kevin Sivula, Decoupling Feature Size and Functionality in Solution-Processed, Porous Hematite Electrodes for Solar Water Splitting, Nano Lett., 2010. vol.10 p.4155-4160.
17. Ilkay Cesar , Andreas Kay , José A. Gonzalez Martinez , and Michael Grätzel , Translucent Thin Film Fe2O3 Photoanodes for Efficient Water Splitting by Sunlight: Nanostructure-Directing Effect of Si-Doping, J. Am. Chem. Soc., 2006. vol.128 p. 4582-4583.
18. Andreas Kay , Ilkay Cesar , and Michael Grätzel, New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films, J. Am. Chem. Soc., 2006. vol.128 p. 15714-15721.
19. Mourad Frites, Yasser A. Shaban, Shahed U.M. Khan, Iron oxide (n-Fe2O3) nanowire films and carbon modified (CM)-n-Fe2O3 thin films for hydrogen production by photosplitting of water, Int J Hydrogen Energy, 2010. vol.35 p.4944-4948.
20. M. Gaudon, N. Pailhe´, J. Majimel, A. Wattiaux, J. Abel, A. Demourgues, Influence of Sn4+ and Sn4+/Mg2+ doping on structural features and visible absorption properties of α-Fe2O3 hematite, Solid State Chem., 2010. vol.183 p.2101-2109.
21. M. Grätzel, J. Kiwi, C.L. Morrison, R.S. Davidson and A.C.C. Tseung, J. Chem. Soc., 1985. vol.81 p.1883-1890.
22. Nathan T. Hahn and C. Buddie Mullins, Photoelectrochemical Performance of Nanostructured Ti- and Sn-Doped α-Fe2O3 Photoanodes, Chem. Mater., 2010. vol.22 p.6474-6482.
23. William B Ingler Jr, Shahed U.M Khan, Photoresponse of spray pyrolytically synthesized magnesium-doped iron (III) oxide (p-Fe2O3) thin films under solar simulated light illumination, Thin Solid Films, 2004. vol.461(2) p.301-308.
24. William B. Ingler, Jr. and Shahed U. M. Khan, A Self-Driven p/n-Fe2O3 Tandem Photoelectrochemical Cell for Water Splitting, Electrochem. Solid-State Lett., 2006. vol.9(4) p.G144-G146.
25. Saroj Kumari, Aadesh P. Singh, Sonal, Dinesh Deva, Rohit Shrivastav, Sahab Dass, Vibha R. Satsangi, Spray pyrolytically deposited nanoporous Ti4+ doped hematite thin films for efficient photoelectrochemical splitting of water, Int J Hydrogen Energy, 2010. vol.35(9) p.3985-3990.
26. Le Formal, F.G., M.; Sivula, K., Controlling Photoactivity in Ultrathin Hematite Films for Solar Water-Splitting, Adv. Funct. Mater., 2010. vol.20(7) p.1099-1107.
27. K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, M. Gratzel, Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach, J. Am. Chem. Soc, 2010. vol.132 p. 7436-7444.
28. S. David Tilley Dr., Maurin Cornuz, Kevin Sivula Dr. and Michael Grätzel Prof. Dr., Light-Induced Water Splitting with Hematite: Improved Nanostructure and Iridium Oxide Catalysis, Angew. Chem. Int. Ed., 2010. vol.49(36) p.6405-6408.
29. Heli Wang and John A. Turner, Characterization of Hematite Thin Films for Photoelectrochemical Water Splitting in a Dual Photoelectrode Device Physical and Analytical Electrochemistry, J. Electrochem. Soc, 2010. vol.157(11) p.F173-F178.
30. Diane K. Zhong , Jianwei Sun , Hiroki Inumaru and Daniel R. Gamelin, Solar Water Oxidation by Composite Catalyst/α-Fe2O3 Photoanodes, J. Am. Chem. Soc., 2009. vol.131(17) p.6086-6087.
31. Yongjing Lin , Sa Zhou , Stafford W. Sheehan , and Dunwei Wang, Nanonet-Based Hematite Heteronanostructures for Efficient Solar Water Splitting, J. Am. Chem. Soc., 2011. vol.133 p.2398-2401.
32. John H. Kennedy and Karl W. Frese, Jr., Photooxidation of Water at α‐Fe2O3 Electrodes, J. Electrochem. Soc., 1978. vol.125 p.709–714.
33. Alan Kleiman-Shwarsctein, Yong-Sheng Hu, Arnold J. Forman, Galen D. Stucky and Eric W. McFarland, Electrodeposition of α-Fe2O3 Doped with Mo or Cr as Photoanodes for Photocatalytic Water Splitting, J. Phys. Chem. C, 2008. vol.112 p. 15900–15907.
34. Niclas Beermann, Lionel Vayssieres, Sten-Eric Lindquist, and Anders Hagfeldt, Photoelectrochemical Studies of Oriented Nanorod Thin Films of Hematite, J. Electrochem. Soc, 2000. vol.147 p.2456-2461.
35. T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects, Int J Hydrogen Energy, 2002. vol.27 p.991–1022.
36. Kenneth L. Hardee and Allen J. Bard, Semiconductor Electrodes: V . The Application of Chemically Vapor Deposited Iron Oxide Films to Photosensitized Electrolysis, J. Electrochem. Soc, 1976. vol.123 p.1024–1026.
37. John H. Kennedy, Menahem Anderman, and Ruth Shinar, Photoactivity of Polycrystalline α-Fe2O3 Electrodes Doped with Group IVA Elements, J. Electrochem. Soc., 1981. vol.128 p.2371–2373.
38. Andreas Kay , Ilkay Cesar , and Michael Grätzel, New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films, J. Am. Chem. Soc., 2006. vol.128 p.15714-15721.
39. E. J. Podlaha and D. Landolt, Induced Codeposition: III. Molybdenum Alloys with Nickel, Cobalt, and Iron, J. Electrochem. Soc, 1997. vol.144 p.1672–1680.
40. Marcos Cramer Esteves and Paulo T. A. Sumodjo, Electrodepositon of CoNiMo Magnetic Thin Films from a Chloride Bath in the Presence of Citrate or Glycine, J. Electrochem. Soc, 2006. vol.153 p.C540–C545.
41. F.M. Takata, P.T.A. Sumodjo, Electrodeposition of magnetic CoPd thin films: Influence of plating condition, Electrochim. Acta, 2007. vol.52 p.6089–6096.
42. M. Donten, Z. Stojek, and H. Cesiulis, Formation of Nanofibers in Thin Layers of Amorphous W Alloys with Ni, Co, and Fe Obtained by Electrodeposition, J. Electrochem. Soc, 2003. vol.150 p.C95–C98.
43. Ibro Tabakovic, Steve Riemer, Ming Sun, Vladyslav A. Vas'ko, and Mark T. Kief, Effect of Magnetic Field on NiCu Electrodeposition from Citrate Plating Solution and Characterization of Deposit, J. Electrochem. Soc, 2005. vol.152 p.C851–C860.
44. E. Gómez, A. Labarta, A. Llorente, E. Vallés, Electrodeposited cobalt+copper thin films on ITO substrata, J. Electroanal. Chem., 2001. vol.517 p.63-68.
45. V.V. Kuznetsov, Z.V.B., T.V. Pshenichkina, N.V. Morozova, V.N.Kudryavtsev, Russ., J. Electrochem. Soc, 2007. 43: p. 349–354.
46. E. Gómez, A.L., E. Vallés, Obtention and characterisation of cobalt+copper electrodeposits from a citrate bath, J. Electroanal. Chem., 2000. vol.495 p.19–26.
47. O. Berkh, L. Burstein, Y. Shacham-Diamand, and E. Gileadi, The Chemical and Electrochemical Activity of Citrate on Pt Electrodes, J. Electrochem. Soc, 2011. Vol.158 p.F85–F91.
48. Taˆnia Lopes, L.s.A., Florian Le Formal, Michael Gratzel, Kevin Sivula*, Ade´lio Mendes*, Hematite photoelectrodes for water splitting: evaluation of the role of film thickness by impedance spectroscopy, Phys. Chem. Chem. Phys., 2014. vol.16 p. 16515-16523.
49. Dr. Kevin Sivula*, Florian Le Formal and Prof. Dr. Michael Grätzel, Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes, ChemSusChem, 2011. vol.4 p.432–449.
50. Gerischer, H., Semiconductor Electrochemistry, in Treatise on Physical Chemistry: Electrochemistry, 1970. IXA: p. 463–542.
51. A. Aruchamy, G. Aravamudan and G. Subba Rao, Bull. Mater. Sci., 1982. vol.4 p.483–526.
52. A. Hankin, J. C. Alexander and G. H. Kelsall, Constraints to the flat band potential of hematite photo-electrodes, Phys. Chem. Chem. Phys., 2014. 16 p.16176-16186.
53. Seraphin BO. In: Seraphin BO, editor. Solar energy conversion. Berlin: Springer, 1979. p.5–56.
54. Chandra S. Photoelectrochemical solar cells. NewYork: Gordon and Breach.
55. Morrison SR. Electrochemistry at semiconductor and oxidized metal electrodes. New York: Plenum Press, 1980. p.1–401.
56. W. J. Albery, G. J. O’Shea and A. L. Smith, Faraday Trans, J. Chem. Soc., 1996. vol.92 p.4083.
57. Scott P. Harrington and Thomas M. Devine, Analysis of Electrodes Displaying Frequency Dispersion in Mott-Schottky Tests, J. Electrochem. Soc., 2008. vol.155 p. C381-C386.
58. Francisco Fabregat-Santiago, Germà Garcia-Belmonte, Juan Bisquert, Peter Bogdanoff, and Arie Zaban, Mott-Schottky Analysis of Nanoporous Semiconductor Electrodes in Dielectric State Deposited on SnO2(F) Conducting Substrates, J. Electrochem. Soc., 2003. vol.150 p.E293-E298.
59. W. P. Gomes and F. Cardon, in Progress in Surface Science (Edited by S. G. Davison), Pergamon Press,, 1982. 12: p. 155.
60. John H. Kennedy and Karl W. Frese, Jr., Photooxidation of Water at α‐Fe2O3 Electrodes, J. Electrochem. Soc, 1978. vol.125 p.709-714.
61. William B Ingler Jr, Shahed U.M Khan, Photoresponse of spray pyrolytically synthesized magnesium-doped iron (III) oxide (p-Fe2O3) thin films under solar simulated light illumination, Thin Solid Films, 2004. vol.461 p.301-308.
62. Vibha R. Satsangi, Saroj Kumari, Aadesh P. Singh, Rohit Shrivastav, Sahab Dass, Nanostructured hematite for photoelectrochemical generation of hydrogen, Int. J. Hydrogen Energy, 2008. vol.33 p.312-318.
63. Alan Kleiman-Shwarsctein, Muhammad N. Huda, Aron Walsh, Yanfa Yan, Galen D. Stucky, Yong-Sheng Hu, Mowafak M. Al-Jassim and Eric W. McFarland, Electrodeposited Aluminum-Doped α-Fe2O3 Photoelectrodes: Experiment and Theory, Chem. Mater., 2010. vol.22 p.510-517.
64. Ya-Ping Hsu,Sheng-Wei Lee, Jeng-Kuei Chang, Chung-Jen Tseng, Kan-Rong Lee, Chih-Hao Wang, Effects of Platinum Doping on the Photoelectrochemical Properties of Fe2O3 Electrodes, Int. J. Electrochem Sci., 2013. vol.8 p.11615-11623.
65. Nathan T. Hahn and C. Buddie Mullins, Photoelectrochemical Performance of Nanostructured Ti- and Sn-Doped α-Fe2O3 Photoanodes, Chem. Mater, 2010. vol.22 p.6474-6482.
66. Ilkay Cesar , Kevin Sivula , Andreas Kay , Radek Zboril and Michael Grätzel, Influence of Feature Size, Film Thickness, and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting, J. Phys. Chem. C 2008. vol.113 p.772-782.
67. Gongming Wang , Yichuan Ling , Damon A. Wheeler, Kyle E. N. George, Kimberly Horsley, Clemens Heske, Jin Z. Zhang, and Yat Li, Facile Synthesis of Highly Photoactive α-Fe2O3-Based Films for Water Oxidation, Nano Lett., 2011. vol.11 p. 3503-3509.
68. Guotian Yan, Min Zhang, Jian Hou, Jianjun Yang, Photoelectrochemical and photocatalytic properties of N + S co-doped TiO2 nanotube array films under visible light irradiation, Mater. Chem. Phys, 2011. vol.129 p.553-557.
69. Hyun Gil Cha, Jieun Song, Hyun Sung Kim, Woonsup Shin, Kyung Byung Yoon and Young Soo Kang, Facile preparation of Fe2O3 thin film with photoelectrochemical properties, Chem. Commun, 2011. vol.47 p.2441-2443.
70. Yichuan Ling , Gongming Wang , Damon A. Wheeler , Jin Z. Zhang , and Yat Li, Sn-Doped Hematite Nanostructures for Photoelectrochemical Water Splitting, Nano Lett. , 2011. vol.11 p.2119-2125.
71. Alexis Duret and Michael Grätzel, Visible Light-Induced Water Oxidation on Mesoscopic α-Fe2O3 Films Made by Ultrasonic Spray Pyrolysis, J. Phys. Chem. B, 2005. vol.109 p.17184-17191.
72. Ricardo H. Gonçalves, Bruno H. R. Lima, and Edson R. Leite, Magnetite Colloidal Nanocrystals: A Facile Pathway To Prepare Mesoporous Hematite Thin Films for Photoelectrochemical Water Splitting, J. Am. Chem. Soc., 2011. vol.133 p.6012-6019.
73. Yong-Sheng Hu, Alan Kleiman-Shwarsctein, Arnold J. Forman, Daniel Hazen, Jung-Nam Park and Eric W. McFarland, Pt-Doped α-Fe2O3 Thin Films Active for Photoelectrochemical Water Splitting, Chem. Mater, 2008. vol.20 p.3803-3805.
74. Haripriya E Prakasam, Oomman K Varghese, Maggie Paulose, Gopal K Mor and Craig A Grimes, Synthesis and photoelectrochemical properties of nanoporous iron (III) oxide by potentiostatic anodization, Nanotechnology, 2006. vol.17 p.4285–4291.
75. Yong-Sheng Hu, Alan Kleiman-Shwarsctein, Arnold J. Forman, Daniel Hazen, Jung-Nam Park and Eric W. McFarland, Pt-Doped α-Fe2O3 Thin Films Active for Photoelectrochemical Water Splitting, Chem. Mater, 2008. vol.20 p.3803–3805.
76. Alan Kleiman-Shwarsctein , Muhammad N. Huda , Aron Walsh , Yanfa Yan , Galen D. Stucky , Yong-Sheng Hu , Mowafak M. Al-Jassim and Eric W. McFarland, Electrodeposited Aluminum-Doped α-Fe2O3 Photoelectrodes: Experiment and Theory, Chem. Mater, 2010. vol.22 p.510–517.
77. Ryan L. Spray and Kyoung-Shin Choi, Photoactivity of Transparent Nanocrystalline Fe2O3 Electrodes Prepared via Anodic Electrodeposition, Chem. Mater, 2009. vol.21 p.3701–3709.
78. John B. Goodenough, Energy bands in TX2 compounds with pyrite, marcasite, and arsenopyrite structures, Solid State Chem, 1971. vol.5 p.144-152.
79. Chun-Jiang Jia, Ling-Dong Sun Prof. Dr., Zheng-Guang Yan, Li-Ping You Prof., Feng Luo, Xiao-Dong Han Prof. Dr., Yu-Cheng Pang, Ze Zhang Prof. Dr. and Chun-Hua Yan Prof. Dr., Single-Crystalline Iron Oxide Nanotubes, Angew. Chem. Int. Ed., 2005. vol.44 p.4328-4333.
80. Kiwamu Sue, Toshiyuki Sato, Shin-ichiro Kawasak, Yoshihiro Takebayashi, Satoshi Yoda, Takeshi Furuya and Toshihiko Hiaki, Continuous Hydrothermal Synthesis of Fe2O3 Nanoparticles Using a Central Collision-Type Micromixer for Rapid and Homogeneous Nucleation at 673 K and 30 MPa, Ind. Eng. Chem, 2010. vol.49 p. 8841-8846.
81. Ilkay Cesar , Andreas Kay , José A. Gonzalez Martinez , and Michael Grätzel, Translucent Thin Film Fe2O3 Photoanodes for Efficient Water Splitting by Sunlight: Nanostructure-Directing Effect of Si-Doping, J. Am. Chem. Soc, 2006. vol.128 p.4582-4583.
82. W. Widiyastutia, Ratna Balgis, Ferry Iskandar, Kikuo Okuyam, Nanoparticle formation in spray pyrolysis under low-pressure conditions, Chem. Eng. Sci. , 2010. vol.65 p.1846-1854.
83. Eric L. Miller, Daniela Paluselli, Bjorn Marsen, Richard E. Rocheleau, Low-temperature reactively sputtered iron oxide for thin film devices, Thin Solid Films, 2004. vol.466 p.307-313.
84. Zhonghai Zhang , Md. Faruk Hossain , Takayuki Miyazaki and Takakazu Takahashi, Gas Phase Photocatalytic Activity of Ultrathin Pt Layer Coated on α-Fe2O3 Films under Visible Light Illumination, Environ. Sci. Technol, 2010. vol.44 p.4741-4746.
85. Chi-dong Park, Jeremy Walker, Rina Tannenbaum, A. E. Stiegman, J. Frydrych and L. Machala, Sol-Gel-Derived Iron Oxide Thin Films on Silicon: Surface Properties and Interfacial Chemistry, ACS Appl. Mater, 2009. vol.1 p.1843-1846.
86. Akira Watanabe and Hiromitsu Kozuka, Photoanodic Properties of Sol-Gel-Derived Fe2O3 Thin Films Containing Dispersed Gold and Silver Particles, J. Phys. Chem. B, 2003. vol.107 p.12713-12720.
87. Mikko Aronniemi, J. Saino, J. Lahtinen, Characterization and gas-sensing behavior of an iron oxide thin film prepared by atomic layer deposition, Thin Solid Films, 2008. vol.516 p.6110-6115.
88. S. Ge, X.Y. Shi, K. Sun, C.P. Li, C. Uher, J.R. Baker, M.M.B. Holl, B.G. Orr, J. Phys. Chem. B, 2009. C 113 p.13593.
89. Alexis Duret and Michael Grätzel, Visible Light-Induced Water Oxidation on Mesoscopic α-Fe2O3 Films Made by Ultrasonic Spray Pyrolysis, J. Phys. Chem. B, 2005. vol.109 p.17184-17191.
90. Andreas Kay , Ilkay Cesar , and Michael Grätzel, New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films, J. Am. Chem. Soc., 2006. vol.128 p. 15714-15721.
91. Yong-Sheng Hu, Alan Kleiman-Shwarsctein, Arnold J. Forman, Daniel Hazen, Jung-Nam Park and Eric W. McFarland, Pt-Doped α-Fe2O3 Thin Films Active for Photoelectrochemical Water Splitting, Chem. Mater. , 2008. vol.20 p.3803-3805.
92. Alan Kleiman-Shwarsctein , Muhammad N. Huda , Aron Walsh , Yanfa Yan , Galen D. Stucky , Yong-Sheng Hu , Mowafak M. Al-Jassim and Eric W. McFarland, Electrodeposited Aluminum-Doped α-Fe2O3 Photoelectrodes: Experiment and Theory, Chem. Mater., 2010. vol.22 p.510-517.
93. Ying Liu, Yu-Xiang Yu, Wei-De Zhang, Photoelectrochemical properties of Ni-doped Fe2O3 thin films prepared by electrodeposition, Electrochimica Acta, 2012. vol.59 p.121-127.
94. Elham Cheraghipour, Sirus Javadpour, Ali Reza Mehdizadeh, Citrate capped superparamagnetic iron oxide nanoparticles used for hyperthermia therapy. J. Biomedical Science and Engineering, 2012. vol.5 p.715-719.
95. George Redden, John Bargary, Rizlan Bencheikh-Latmaniz, Citrate Enhanced Uranyl Adsorption on Goethite: An EXAFS Analysis. Journal of Colloid and Interface Science, 2001. vol.244 p.211–219.
96. Kazuhiko Kandori, Yuri Kawashima, Tatsuo Ishikawa, Effects of Citrate Ions on the Formation of Monodispersed Cubic Hematite Particles. Journal of Colloid and Interface Science, 1992. vol.152 p.284-288.
97. Jiujun Deng, Xiaoxin Lv, Jing Gao, Aiwu Pu, Ming Li, Xuhui Sun* and Jun Zhong*, Facile synthesis of carbon-coated hematite nanostructures for solar water splitting. Energy Environ. Sci., 2013. vol.6 p.1965–1970.
98. Andreas Kay , Ilkay Cesar , and Michael Grätzel, New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films, J. Am. Chem. Soc., 2006. vol.128 p.15714-15721.
99. Benjamin M. Klahr and Thomas W. Hamann, Current and Voltage Limiting Processes in Thin Film Hematite Electrodes. J. Phys. Chem. C, 2011. vol.115(16) p. 8393–8399.