研究生: |
洪介元 Houng, Jieh Yuan |
---|---|
論文名稱: |
脈衝式磁致動超音波成像系統開發 Development of a Pulsed Magnetomotive Ultrasound Imaging System |
指導教授: |
李夢麟
Li, Meng Lin |
口試委員: |
葉秩光
Yeh, Chih Kuang 衛榮漢 Wei, Zung Hang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 磁致動 、超音波 、奈米粒子 |
外文關鍵詞: | Magnetomotive, Ultrasound, Nanoparticle |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
磁致動超音波成像系統是以超音波成像技術配合磁奈米藥物及磁場進行成像的系統,它被認為是具有早期診斷的潛力。目前常見的系統以電磁鐵產生連續波的磁場為主,然而部份的能量在過程中轉換成熱並累積在線圈上,這樣的系統容易過熱而不適合產生更高強度的磁場。在此問題下系統的穿透深度及磁場分布範圍有限 。為了解決此問題,在本研究中我們提出並建立了一基於超快成像技術之脈衝式磁致動超音波成像系統 。我們客製了一可程式化之磁脈衝產生器。該裝置具有相對於一般電流放大器可提供較大的輸出電壓及峰值輸出電流,能產生僅5-10毫秒長度的磁脈衝。其可程式化的設計配合電腦上的類比輸出卡可以產生經設計的磁脈衝序列。透過高頻磁脈衝序列可使磁奈米粒子以產生相同頻率位移變化,搭配基於超快成像技術的斑點追蹤技術找出組織位移隨時間的變化,之後再匹配濾波器找出組織中位移變化與磁場變化有較高相關係數以及對應時間延遲的區域,便可壓低組織背景的移動雜訊而定位出磁奈米粒子累積的區域。我們亦測試了系統所能產生的磁脈衝長度及不同磁場配置下的磁場分布並對不同長度的單一脈衝作比較並選出最適合系統的高頻磁脈衝序列。此外,我們亦整合了超音波探頭及電磁鐵建立了適合臨床應用之反向式磁致動超音波探頭,並實驗驗證搭配此探頭之脈衝式磁致動超音波系統磁致動超音波穿透深度可達探頭以下1.5公分。
Magnetomotive ultrasound (MMUS) imaging system is an ultrasound based imaging system which accompanies with magnetic nanoparticles and magnetic field, and it has the feasibility for early diagnosis. The most common MMUS uses continuous wave magnetic field to induce the magnetomotion of the magnetic nanoparticles. However, a part of energy translates into heat and causes thermal problems in the system. Such a system suffers the thermal constraints and is not suitable to generate stronger magnetic field. Under this situation, the system has a limited penetration depth or small magnetic field area (i.e., imaging field of view). To solve this problem, in this study, we propose and develop a ultrafast imaging based pulsed MMUS imaging system. We build a custom-made programmable magnetic pulser. This module can generate higher voltage and current output than general current amplifiers and it can generate 5 to10-ms magnetic pulse. With the programmable capability, this module is able to generate a coded magnetic pulse sequence. The coded high frequency magnetic pulse sequence will induce a distinct displacement profile of magnetic nanoparticles from the background tissues. After matched filtering the displacement profile at each imaging point with the designed coded magnetic pulse sequence, the background tissue motion artifacts can be significantly suppressed and thus the distribution of magnetic nanoparticles can be found via thresholding of the derived correlation coefficient and corresponding lag time at each imaging point. We experimentally test the maximum and minimum achievable magnetic pulse length of the system and magnetic field intensity, and the corresponding magnetic field distribution. We also compares the imaging results with different magnetic pulse lengths and thus optimize the most suitable magnetic pulse sequence of the system. In addition, a clinically translatable backward mode MMUS probe integrating the ultrasound transducer and the electromagnet is build and the penetration depth of the system equipped with this probe is at least 1.5 cm.
[1] S. Vallabhajosula, Molecular Imaging: Radiopharmaceuticals for PET and SPECT, Springer Science & Business Media, 2009.
[2] Osamu F. Kaneko, Jürgen K. Willmann, “Ultrasound for molecular imaging and therapy in cancer,” Quant Imaging Med Surg, 2012.
[3] M. Evertsson, “In vivo magnetomotive ultrasound imaging of rat lymph nodes – a pilot study,” 於 IEEE International Ultrasonics Symposium, 2015.
[4] M. Evertsson, “Magnetomotive Ultrasound Imaging Of Rat Lymph Nodes In Situ: Assessment Of Imaging Parameters,” 於 Joint UFFC, EFTF and PFM Symposium, 2013.
[5] Chen_S1,Greenleaf JF, “Liver elasticity and viscosity quantification using shearwave dispersion ultrasound vibrometry (SDUV).,” 於 Engineering in Medicine and Biology Society, 2009.
[6] T. W. J. Almeida, “Comparison Between Shear Wave Dispersion Magneto Motive Ultrasound and Transient Elastography for Measuring Tissue-Mimicking Phantom Viscoelasticity,” IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, vol. 62, 12 2015.
[7] M. Mehrmohammadi, “Pulsed Magneto-motive Ultrasound Imaging Using Ultrasmall Magnetic Nanoprobes,” Mol Imaging., 5 2011.
[8] J. Oh, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology, 2006.
[9] M. O’Donnell, “Magnetomotive photoacoustic imaging: in vitro studies of magnetic trapping with simultaneous photoacoustic detection of rare circulating tumor cells,” J Biophotonics., 2014.
[10] M. Mehrmohammadi, “Pulsed Magneto-motive Ultrasound Imaging Using Ultrasmall,” Mol Imaging., 2011.
[11] J. Bercoff, Ultrafast Ultrasound Imaging, INTECH Open Access Publisher, 2011.
[12] Fei Zheng and Emad Ebbini, “A Subsample Estimator Based on Zero Phase Crossing in Ultrasound,” 於 IEEE International Ultrasonics Symposium Proceedings, 2012.
[13] G. L. TURIN, "An introduction to matched filters". IRE Transactions on Information Theory., IEEE, 1962.
[14] T. J. Hall, “Phantom Materials for Elastography,” ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 44, 11 1997.
[15] M. G. Harisinghani, “Noninvasive Detection of Clinically Occult Lymph-Node Metastases in Prostate Cancer,” The new england journal of medicine, 6 2003.
[16] M. Evertsson, “Multimodal Detection of Iron Oxide Nanoparticles in Rat Lymph Nodes Using Magnetomotive Ultrasound Imaging and Magnetic Resonance Imaging,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Fr 1276 equency Control, vol. 61, 8 2014.
[17] K. R. Nightingale, “Acoustic Radiation Force Elasticity Imaging in Diagnostic Ultrasound,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 4 2013.
[18] M. Mehrmohammadi, “Enhanced pulsed magneto-motive ultrasound imaging using superparamagnetic nanoclusters,” Nanotechnology, 12 2010.
[19] J. Ophir, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc Instn Mech Engrs Vol 213, 1999.
[20] M. Mehrmohammadia, “In vivo Pulsed Magneto-motive Ultrasound Imaging Using Highperformance Magnetoactive Contrast Nanoagents,” Nanoscale, 2013.
[21] Q. A. Pankhurst, “Applications of magnetic nanoparticles,” JOURNAL OF PHYSICS D: APPLIED PHYSICS, 2003.
[22] A. G. Pope, “Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive ultrasound,” PHYSICS IN MEDICINE AND BIOLOGY, 9 2013.
[23] Junwei Li, Bastien Arnal, Chen-Wei Wei, “Magneto-Optical Nanoparticles for Cyclic Magnetomotive Photoacoustic Imaging,” ACS Nano., 2 2015.
[24] Gabriel Montaldo, “Coherent Plane-Wave Compounding for Very High Frame Rate Ultrasonography and Transient Elastography,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, 3 2009.
[25] A. C. Bruno, “MAGNETOMOTIVE ULTRASOUND ELASTOGRAPHY: PRELIMINARY EVALUATION IN PHANTOM,” XXIV Brazilian Congress on Biomedical Engineering, 2014.
[26] Ralph Weissleder,Umar Mahmood, “Molecular Imaging,” Radiology, 5 2001.
[27] K. Nightingale, “Acoustic Radiation Force Impulse (ARFI) Imaging: a Review,” Curr Med Imaging Rev., 11 2011.
[28] M. Mehrmohammadi, “Imaging of Iron Oxide Nanoparticles Using Magneto-Motive Ultrasound,” 於 IEEE Ultrasonics Symposium, 2007.
[29] A. E. Giuliano, “Lymphatic Mapping and Sentinel Lymphadenectomy for Breast Cancer,” Annals of Surgery, 9 1994.
[30] Erpelding TN, Wang LV., “Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system.,” Radiology, 7 2010.