研究生: |
楊永壽 Yung shou Yang |
---|---|
論文名稱: |
增加MDCK及Vero細胞表面唾液酸含量的方法研究 Glycoengineering of cell surface sialic acid contents in MDCK and Vero cells |
指導教授: |
黎耀基
Yiu Kay Lai 徐祖安 Tsu An Hsu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 58 |
中文關鍵詞: | 唾液酸 、N-乙醯甘露糖胺 |
外文關鍵詞: | sialic acid, MDCK cells, ManNAc, Vero cells |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
醣修飾(glycosylation)是蛋白質轉譯後修飾的一種,可以分成N鍵結與O鍵結兩種。在哺乳類動物細胞中,佔據醣蛋白的N鍵結以及O鍵結醣修飾功能基末端的,通常是唾液酸(sialic acid)。唾液酸具有許多功能,例如可作為流行性感冒病毒(influenza virus)入侵宿主細胞的結合受器 (virus receptor)。由於使用受精雞蛋製造流感疫苗會造成一些問題,因此新一代的流感疫苗多朝向使用動物細胞來生產的方向。但是目前使用動物細胞製造流感病毒的產率 (yield) 不夠高。如何提高生產的病毒量達到可以工業化量產的條件,是亟待克服的問題。
根據流感病毒感染宿主細胞的路徑,Hatakeyama等人於2005年證明若是在MDCK細胞 (Madin -Darby canine kidney cell) 中大量表現 (overexpress) α2,6-唾液酸轉移酶(α2,6-sialyltransferase),不但會增加MDCK細胞表面的α2,6-唾液酸含量,同時也會使其生產的病毒產率提升。
根據此結果,在本研究中將嘗試用生物工程的方法提升兩個製造流感疫苗常用的細胞株,MDCK及Vero (Africa Green Monkey kidney cell) 細胞表面的唾液酸含量來增加病毒產量。實驗方法為在MDCK以及Vero細胞的培養基中分別添加兩種唾液酸的前驅物,N-乙醯甘露糖胺 (ManNAc) 以及N-乙醯葡萄糖胺(GlcNAc),之後以高解析液相層析儀 (HPLC) 和流式細胞儀 (flow cytometer) 測量細胞中唾液酸含量。研究結果顯示,加入N-乙醯甘露糖胺會使細胞內的唾液酸含量增加,但是加入N-乙醯葡萄糖胺卻沒有任何影響。N-乙醯葡萄糖胺在唾液酸合成路徑中位於N-乙醯甘露糖胺的上游,由這個結果可推測在MDCK以及Vero細胞的唾液酸合成路徑中,N-乙醯甘露糖胺的生成可能是速率決定步驟 (rate-limiting step)之一。這個推測與Keppler等人在1999所得到的結論相符合。另一方面,若在MDCK及Vero細胞中加入N-乙醯甘露糖胺的同時大量表現一磷胞苷酸生成酶(CMP-sialic acid synthetase)會使得這兩個細胞株中的唾液酸含量更明顯地增加。這個結果暗示一磷胞苷酸生成酶可能也是唾液酸生成的調控因素。
本研究建立了可以在MDCK以及Vero細胞中提升其唾液酸含量的工程方法,同時也提供了研究這兩種細胞株唾液酸合成路徑的重要線索。這個方法也可以使用在其他的哺乳類動物細胞中。增加細胞唾液酸含量有許多用途,例如應用在流感疫苗或是重組蛋白質(recombinant protein)的生產。而這些有潛力的應用值得投入更多的研究。
Glycosylation is one of the protein post-translational modifications, which plays important roles in normal cell physiology. There are two types of glycosylation: N- and O-linked glycosylation. In mammalian cells, the most common monosaccharides found in the terminus of N- and O-linked oligosaccharides of glycoproteins and glycolipids are sialic acids. Sialic acids have many important functions, including acting as receptors for influenza viruses to invade host cells. Influenza virus vaccines are manufactured in the embryonated chicken eggs, but many problems are involved in this method. Thus, many researches focus on how to produce next generation of influenza vaccines in cultured mammalian cell lines. But, the yields of influenza viruses in cell lines are usually very low compared to those in chicken eggs. In order to decrease the production cost of vaccines produced in cultured mammalian cells, virus yields need to be optimized.
According to the infection pathway of influenza viruses, Hatakeyama et al. showed that α2,6-sialyltranseferase overexpressed MDCK cells, which had higher surface sialic acid contents, had higher virus yields when they infected by viruses This result suggested that increase in sialic acid levels may improve the virus yields.
In this study, N-acetylmannosamine (ManNAc) and N-acetylglucosamine (GlcNAc) were fed in the culture medium for the purpose of raising sialic acid contents in MDCK and Vero cells. Sialic acid contents increased upon ManNAc supplementation in both MDCK and Vero cells. But, GlcNAc supplement did not affect sialic acid levels in those two cells. These results showed that ManNAc supplementation was a good method for raising surface sialic acid contents in MDCK and Vero cells and also implied that UDP-GlcNAc 2-epimerase regulates rate-limiting step of the pathway, namely biosynthesis of ManNAc, in MDCK and Vero cells. This speculation was supported by the study of Keppler et al. [1] Besides, supplement of ManNAc to CMP-sialic acid synthetase expressed MDCK or Vero cells led to even higher increase in sialic acid level. This result implied that CMP-sialic acid synthetase may also regulate another bottleneck of sialic acid synthesis pathway.
The developed method applied in MDCK and Vero cells may have many applications such as production of recombinant proteins or influenza vaccines. Further investigations of these sialylation-increased cells are needed.
1. Oliver T. Keppler, S.H., 3* Josmar Langner, and W.R. Reinhard Schwartz-Albiez, Michael Pawlita, UDP-GlcNAc 2-Epimerase: A Regulator of Cell Surface Sialylation. science, 1999. 284: p. 1372-1376.
2. Kornfeld, R. and S. Kornfeld, Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem, 1985. 54: p. 631-64.
3. Jenkins, N. and E.M. Curling, Glycosylation of recombinant proteins: problems and prospects. Enzyme Microb Technol, 1994. 16(5): p. 354-64.
4. Imperiali, B. and S.E. O'Connor, Effect of N-linked glycosylation on glycopeptide and glycoprotein structure. Curr Opin Chem Biol, 1999. 3(6): p. 643-9.
5. Sareneva, T., et al., N-glycosylation of human interferon-gamma: glycans at Asn-25 are critical for protease resistance. Biochem J, 1995. 308 ( Pt 1): p. 9-14.
6. Varki, A., Essentials of Glycobiology. text book, Cold Spring Harbor Laboratory Press Cold Spring Harbor, New York 1999.
7. Dempski, R.E., Jr. and B. Imperiali, Oligosaccharyl transferase: gatekeeper to the secretory pathway. Curr Opin Chem Biol, 2002. 6(6): p. 844-50.
8. Schauer, R., Sialic acids: fascinating sugars in higher animals and man. Zoology (Jena), 2004. 107(1): p. 49-64.
9. Sillanaukee, P., M. Ponnio, and I.P. Jaaskelainen, Occurrence of sialic acids in healthy humans and different disorders. Eur J Clin Invest, 1999. 29(5): p. 413-25.
10. Angata, T. and A. Varki, Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev, 2002. 102(2): p. 439-69.
11. Chou HH, H.T., Diaz S, Krings M, Indriati E, Leakey , P.S. M, Takahata N, and, and V. A., Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to brain expansion during human evolution. Proc. Natl. Acad. Sci. USA, 2002. 99: p. 11736-11741.
12. Viswanathan K. , N.S., Hinderlich S, Lee YC, Betenbaugh MJ., Engineering intracellular CMP-sialic acid metabolism into insect cells and methods to enhance its generation. Biochemistry, 2005. 44(20): p. 7526-7534.
13. Hinderlich, S., et al., A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Purification and characterization of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. J Biol Chem, 1997. 272(39): p. 24313-8.
14. Harduin-Lepers, A., Vallejo-Ruiz, V., Krzewinski-Recchi, and S.-P. M.A., B., Julien, S., Delannoy, P., The human sialyltransferase family. Biochimie, 2001. 83: p. 727-737.
15. Schauer, R., Chemistry, metabolism, and biological functions of sialic acids. Adv Carbohydr Chem Biochem, 1982. 40: p. 131-234.
16. Schauer, R., Kamerling, J.P, Chemistry, biochemistry and biology of sialic acids. Glycoproteins II. Elsevier Science A.V, Amsterdam, 1997: p. 243–402.
17. Kelm, S., Schauer, R, Sialic acids in molecular and cellular recognition. Int. Rev. Cytol., 1997. 175: p. 137–240.
18. Varki, A., Diversity in the sialic acids. Glycobiology, 1992. 2(1): p. 25-40.
19. Ashwell, G., Carbohydrate-Specific Receptors of the Liver. Ann. Rev. Biochem J., 1982. 51: p. 531-554.
20. Runkel, L., et al., Structural and functional differences between glycosylated and non-glycosylated forms of human interferon-beta (IFN-beta). Pharm Res, 1998. 15(4): p. 641-9.
21. Krantz, S.B., Erythropoietin. Blood, 1991. 77(3): p. 419-34.
22. Egrie, J.C. and J.K. Browne, Development and characterization of novel erythropoiesis stimulating protein (NESP). Br J Cancer, 2001. 84 Suppl 1: p. 3-10.
23. Audsley, J.M. and G.A. Tannock, The role of cell culture vaccines in the control of the next influenza pandemic. Expert Opin Biol Ther, 2004. 4(5): p. 709-17.
24. Kemble, G. and H. Greenberg, Novel generations of influenza vaccines. Vaccine, 2003. 21(16): p. 1789-95.
25. Monto, A.S., The threat of an avian influenza pandemic. N Engl J Med, 2005. 352(4): p. 323-5.
26. Ungchusak, K., et al., Probable person-to-person transmission of avian influenza A (H5N1). N Engl J Med, 2005. 352(4): p. 333-40.
27. Bardiya, N. and J.H. Bae, Influenza vaccines: recent advances in production technologies. Appl Microbiol Biotechnol, 2005. 67(3): p. 299-305.
28. Youil, R., et al., Comparative study of influenza virus replication in Vero and MDCK cell lines. J Virol Methods, 2004. 120(1): p. 23-31.
29. Kistner, O., et al., Development of a mammalian cell (Vero) derived candidate influenza virus vaccine. Vaccine, 1998. 16(9-10): p. 960-8.
30. Tree, J.A., et al., Comparison of large-scale mammalian cell culture systems with egg culture for the production of influenza virus A vaccine strains. Vaccine, 2001. 19(25-26): p. 3444-50.
31. Connor, R.J., et al., Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology, 1994. 205(1): p. 17-23.
32. Goto, H. and Y. Kawaoka, A novel mechanism for the acquisition of virulence by a human influenza A virus. Proc Natl Acad Sci U S A, 1998. 95(17): p. 10224-8.
33. Fouchier, R.A., et al., Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol, 2005. 79(5): p. 2814-22.
34. Peiris, J.S., M.D. de Jong, and Y. Guan, Avian influenza virus (H5N1): a threat to human health. Clin Microbiol Rev, 2007. 20(2): p. 243-67.
35. Rogers, G.N. and J.C. Paulson, Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology, 1983. 127(2): p. 361-73.
36. Hatakeyama, S., et al., Enhanced expression of an alpha2,6-linked sialic acid on MDCK cells improves isolation of human influenza viruses and evaluation of their sensitivity to a neuraminidase inhibitor. J Clin Microbiol, 2005. 43(8): p. 4139-46.
37. Xuejun Gu, D.I.C.W., Improvement of interferon-gamma sialylation in Chinese hamster ovary cell culture by feeding of N-acetylmannosamine. Biotechnology and Bioengineering, 1998. 58: p. 642-648.
38. Ngantung, F.A., Engineering Mammalian Cell Line to Improve Sialylation. PhD Thesis, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA., 2005.
39. Chu, V.C. and G.R. Whittaker, Influenza virus entry and infection require host cell N-linked glycoprotein. Proc Natl Acad Sci U S A, 2004. 101(52): p. 18153-8.
40. Hinderlich, S., et al., Biosynthesis of N-acetylneuraminic acid in cells lacking UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. Biol Chem, 2001. 382(2): p. 291-7.
41. Fritsch, M., C.C. Geilen, and W. Reutter, Determination of cytidine 5'-monophospho-N-acetylneuraminic acid pool size in cell culture scale using high-performance anion-exchange chromatography with pulsed amperometric detection. J Chromatogr A, 1996. 727(2): p. 223-30.
42. Tomiya, N., et al., Determination of nucleotides and sugar nucleotides involved in protein glycosylation by high-performance anion-exchange chromatography: sugar nucleotide contents in cultured insect cells and mammalian cells. Anal Biochem, 2001. 293(1): p. 129-37.
43. Hara, S., et al., Determination of mono-O-acetylated N-acetylneuraminic acids in human and rat sera by fluorometric high-performance liquid chromatography. Anal Biochem, 1989. 179(1): p. 162-6.
44. Sato, C., et al., Fluorescent-assisted detection of oligosialyl units in glycoconjugates. Anal Biochem, 1999. 266(1): p. 102-9.
45. Stanton, P.G., et al., Application of a sensitive HPLC-based fluorometric assay to determine the sialic acid content of human gonadotropin isoforms. J Biochem Biophys Methods, 1995. 30(1): p. 37-48.
46. Ngantung, F.A., et al., RNA interference of sialidase improves glycoprotein sialic acid content consistency. Biotechnol Bioeng, 2006. 95(1): p. 106-19.
47. Weikert, S., et al., Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nat Biotechnol, 1999. 17(11): p. 1116-21.
48. Fukuta K, Y.T., Abe R, Asanagi M, Makino T., Genetic engineering of CHO cells producing human interferon-gamma by transfection of sialyltransferases. Glycoconjugate journal, 2000. 17: p. 895-904.
49. Wong, N.S., M.G. Yap, and D.I. Wang, Enhancing recombinant glycoprotein sialylation through CMP-sialic acid transporter over expression in Chinese hamster ovary cells. Biotechnol Bioeng, 2006. 93(5): p. 1005-16.
50. Oetke, C., et al., Epigenetically mediated loss of UDP-GlcNAc 2-epimerase/ManNAc kinase expression in hyposialylated cell lines. Biochem Biophys Res Commun, 2003. 308(4): p. 892-8.
51. Chotigeat, W., et al., Role of environmental conditions on the expression levels, glycoform pattern and levels of sialyltransferase for hFSH produced by recombinant CHO cells. Cytotechnology, 1994. 15(1-3): p. 217-21.
52. Gu, X., Characterization and improvement of interferon-gamma glycosylation in CHO cell culture. PhD Thesis, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA., 1997.
53. Rodriguez, J., et al., Enhanced production of monomeric interferon-beta by CHO cells through the control of culture conditions. Biotechnol Prog, 2005. 21(1): p. 22-30.
54. Mathews, V.H.a.A., Biochemistry. 3rd ed, ed. V.H.a.A. Mathews. 1999.
55. Lubert Stryer, J.B., John Tymoczko, Lubert Stryer, Biochemistry. 5th ed, ed. J.T. Jeremy Berg, Lubert Stryer. 2002.