研究生: |
李佳樺 Lee,Chia Hua |
---|---|
論文名稱: |
氮摻雜二氧化鋯電阻式記憶體之電阻轉換特性研究 Resistive Switching Characteristics of Nitrogen Doped ZrO2 Memory Devices |
指導教授: |
黃嘉宏
Huang, Jia-Hong 喻冀平 Yu, Ge-Ping |
口試委員: |
陳三元
張立 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 48 |
中文關鍵詞: | 電阻式記憶體 、氮摻雜二氧化鋯 、二氧化鋯 、電阻轉換 |
外文關鍵詞: | RRAM, N-doped ZrO2, ZrO2, resistive switching |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用非平衡磁控濺鍍系統鍍著摻氮二氧化鋯薄膜並製作成以鉑為上電極,摻氮二氧化鋯薄膜為電阻轉換層,氮化鈦為下電極的非揮發式電阻轉換記憶體,藉此改善二氧化鋯薄膜之電阻轉換特性,並藉以釐清電阻轉換機制。元件之I-V特性在室溫下量測,另使用電子顯微鏡觀察厚度及微觀結構,並利用低略角X光繞射儀觀察其所含結晶相。摻氮二氧化鋯薄膜之成分則使用X光電子能譜儀分析。
摻雜氮於二氧化鋯電阻轉換層中,可使氮離子置換氧離子並產生氧空缺之缺陷。實驗結果發現,Pt/N-doped ZrO2/TiN為雙極式電阻轉換,且在含氮成分範圍從1.8%到6%之摻氮二氧化鋯相較於純二氧化鋯薄膜可有效的增加其阻值比並降低其轉換為低阻態之操作電壓,但轉為高阻態之操作電壓則沒有變化。此現象可因於摻雜氮後有較高密度之氧空缺缺陷,形成導電性較好之氧空缺燈絲進而提升阻值比。但相對於轉為高電阻態之操作電壓,主要是由焦耳熱效應主導,應與燈絲的直徑較為相關,故氮摻雜無法降低其操作電壓。此外,在我們也發現摻氮等軸晶二氧化鋯相較於單斜晶二氧化鋯有較嚴重之漏電流現象,故阻值比較低。
The objective of this study is to improve the resistive switching characteristics of ZrO2 RRAM by doping nitrogen into ZrO2 insulator layer. The N-doped ZrO2 thin films were deposited by magnetron sputtering with nitrogen content ranging from 1.8% to 6.0%. The I-V characteristics of the Pt/N-doped ZrO2/TiN devices were analyzed at room temperature. Film thickness and microstructure were observed using a field-emission scanning electron microscope. The crystal structure was characterized by glancing incidence X-ray diffraction. Bipolar resistive switching was observed in the Pt/N-doped ZrO2/TiN devices. The Pt/N-doped ZrO2/TiN memory devices effectively increased resistance ratios with increasing the ON state current and slightly lowering the OFF state current. The introducing of nitrogen also facilitated the lowering of the operation voltage of SET process, but did not change the operation voltage of RESET process which mainly due to Joule-Heating effect. Since the doping of nitrogen led to the replacement of O2- by N3- in the ZrO2 lattice, more oxygen vacancies were created to fulfill the charge neutrality requirement. Thus, a more conductive and easier to switch oxygen vacancy filaments can be produced. Moreover, we also discovered that N-doped c-ZrO2 has larger leakage current at OFF state than m-ZrO2, which led to a smaller resistance ratio.
References
1 A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett., 85 (2004) 4073.
2 D. S. Shang, L. D. Chen, Q. Wang, W. Q. Zhang, Z. H. Wu, and X. M. Li, Appl. Phys. Lett., 89 (2006) 172102.
3 A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, and D. Widmer, Appl. Phys.Lett., 77 (2000) 139.
4 C. C. Lin, B. C. Tu, C. C. Lin, C. H. Lin, and T. Y. Tseng, IEEE Electron Device Lett., 27 (2006) 725.
5 Yin-Pin Yang, and Tseung-Yuen Tseng, J. Appl. Phys., 81 May. (1997) 6762-6766.
6 Stefan Lai, and Tyler Lowrey, Tech. Dig. – Int. Electron Devices Meet., (2001) 803-806.
7 Masashi Kawasaki, Akihito Sawa, and Yoshnori Tokura, Int. Conf. Solid State Devices Mater.,(2006) 286-287.
8 J. E. Ralph, and J. M. Woodcock, J Non-Cryst. Solids, 7 Apr. (1972) 236-250.
9 I. Emmer, Thin Solid Films, 20 Jan. (1974) 43-52
10 M. Janousch, G. I. Meijer, U. Staub, B. Delley, S. F. Karg, and B.P. Andreasson, Adv. Mater.,19 (2007) 2232-2235.
11 J.C. Gilles, Bull. Soc. Chim. Fr., 22 (1962) 2118.
12 R. Collongues, J.C. Gilles, A.M. Lejus, M. Perez, Y. Jorba, D. Michel, Mater. Res. Bull., 2 (1967) 837.
44
13 W. W. Zhuang, W.Pan, B. D. Ulrich,J.J.Lee, J. J. Lee, L.Stecker, A.Burmaster, D. R. Evan, S. T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, K. Sakiyama, Y. Wang, S. Q. Liu, N. J. Wu, and A. Ignatiev, IEDM Tech. Dig., (2002) 193-196.
14 I.G. Baek, M.S. Lee, S. Seo, M.J. Lee, D.H. Seo, S. Suh, J.C. Park, S.O. Park, H.S. Kim, I.K. Yoo, U-In Chung, and J.T. Moon, IEDM Tech. Dig., (2004) 587.
15 S. Seo, M. J. Lee, D. H. Seo, S. K. Choi, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. S. Byun, I. R. Hwang, S. H. Kim, and B. H. Park, Appl. Phys. Lett., 86 (2005) 093509.
16 C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J. S. Zhao, and C. S. Hwang, Appl. Phys. Lett., 86 (2005) 262907.
17 A. Chen, S. Haddad, Y. C. Wu, T. N. Fang, Z. Lan, S. Avanzino, S. Pangrle, M. Buynoski, M. Rathor, W. Cai, N. Tripsas, C. Bill, M. VanBuskirk, and M. Taguchi, IEDM Tech. Dig., (2005) 746-769
18 K. M. Kim, B. J. Choi, B. W. Koo, D. S. Jeong, and C. S. Hwang, Electrochemical and Solid-State Letters, 9(12) G343-G346 (2006).
19 H.Y. Lee, P.S. Chen, C.C. Wang, Siddheswar Maikap, P.J.Tzeng, C.H.Lin, L.S. Lee, and M.J. Tsai, Int. Conf. Solid State Devices Mater., (2006) 288-289.
20 S. Muraoka, K. Osano, Y. Kanzawa, S. Mitani, S. Fujii, K. Katayama, Y. Katoh, Z. Wei, T. Mikawa, K. Arita, Y. Kawashima, R. Azuma, K. Shimakawa, A. Odagawa, and T. Takagi, Tech. Dig. – Int. Electron Devices Meet., pp. 779-782 (2007).
45
21 M. Villafuerte, S. P. Heluani, G. Juarez, G. Simonelli, G. Braunstein, and S. Duhalde, Appl. Phys. Lett., 90 (2007) 052105.
22 D. Lee, D.K. Hwang, M. Chang, Y. Son, D.Jun. Seong, D. Choi, and H. Hwang, IEEE Non-Volatile Semiconductor Memory Workshop, (2006) 86-87.
23 I.S. Park, K.R., and J. Ahn, Int. Conf. Solid State Devices Mater., (2006) 572-573.
24 C. Schindler, S. Chandran Puthen Thermadam, R. Waser, and M.N. Kozicki, IEEE Trans. Electron Devices, 54 (2007) 2762-2768.
25 D. Lee, D.J. Seong, H.J. Choi, I. Jo, R. Dong, W. Xiang, S. Oh, M. Pyun, S.O. Seo, S. Heo, M. Jo, D.K. Hwang, H. K. Park, M. Chang, M. Hasan, and H. Hwang, Tech. Dig. – Int. Electron Devices Meet., (2006) 1-4.
26 Y. Li and S. Long, IEEE Electron Device Lett., 31 (2010) 117.
27 S.Y. Wang, D.Y. Lee, and T.Y. Tseng, Appl. Phys. Lett., 95 (2009) 112904.
28 C.Y. Lin, C.Y. Wu, T.Y. Tseng, and C. Hu, J. Appl. Phys., 102 (2007) 094101.
29 C.Y. Lin, C.Y. Wu, T. C. Lee, IEEE Electron Device Lett., 28 (2007) 366.
30 D. Lee, H. Choi, H. Sim, D. Choi, IEEE Electron Device Lett., 26 (2005) 719
31 Q. Li, W. Guan, S. Long, R. Jia, M. Liu, and J. Cheng, Appl. Phys. Lett., 92 (2008) 012117
32 Q. Liu, S. Long, W. Wang, and Q. Zuo, IEEE Electron Device Lett., 30 (2010) 1335.
33 W. Guan, S. Long, Q. Liu, M. Liu, and W. Wang, IEEE Electron Device Lett., 29 (2010)
46
434.
34 W. Guan, S. Long, R. Jia, and M. Liu, Appl. Phys. Lett., 91 (2007) 062111.
35 W. Guan, X. He, Q. Liu, M. Liu, Z. Abid, and W. Wang, Appl. Phys. Lett., 94 (2007) 233106.
36 X. Wu, P. Zhou, J. Li, L.Y. Cheng, H.B. Lv, Y.Y. Lin, and T.A. Tang, Appl. Phys. Lett., 90 (2007) 183507.
37 B. Sun, X. Liu, L.F. Liu, N. Xu, Y. Wang, X.Y. Liu, R.Q. Han, and J.F. Kang, J. Appl. Phys., 105 (2009) 061630.
38 Y. Li, S. Long, M. Zhang, L. Shao, and S. Zang, IEEE Electron Device Lett., 31 (2010) 117.
39 Yin-Pin Yang, and Tseung-Yuen Tseng, J. Appl. Phys., 81 May. (1997) 6762-6766.
40 Chun-Chieh Lin, Bing-Chung Tu, Chao-Cheng Lin, Chen-His Lin, and Tseung-Yuen Tseng, IEEE Electron Device Lett., 27 (2006) 725-727.
41 R. Waser and M. Aono, Nature Mater., 6 (2007) 833.
42 H. Pagnia and N. Scotnik, Phys. Status. Solidi., 108 (1988) 11-65.
43 J. G. Simmons, R.R Verderber, Proc. R. Soc.Lond., A 301 (1967) 77–102.
44 Y. Hirose, and H. Hirose, J. Appl. Phys., 47 (1976) 2767-2772.
45 Zheng-Wang et al. IEEE Electron Dev. Lett., 28 (2007) 14-16.
46 Kozicki, M. N., Gopalan, C., Balakrishnan, M. & Mitkova, M. IEEE Trans.
47
Nanotechnol., 5 (2006) 535–544.
47 Schindler, C., Puthen Thermadam, S. C., Kozicki, R. &Waser, M. N. IEEE Trans. Electron Dev., (in the press).
48 S. Tsui, A. Baikalov, J. Cmaidalka, Y. Y. Sun, Y. Q. Wang, Y. Y. Yue, C. W. Chu, L. Chen, A. J. Jacobson, Appl. Phys. Lett., 85 (2004) 317.
49 A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Appl. Phys. Lett., 85 (2004) 4073.
50 M. J. Rozenberg, I. H. Inoue, M. J. Sanchez, Phys. Rev. Lett., 92 (2004) 178 302.
51 T. Oka, N. Nagaosa, Phys. Rev. Lett., 95 (2005) 266 403.
52 H. P. R. Frederikse, W. R. Thurber, W. R. Hosler, Phys., Rev. 134 (1964) A442.
53 B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, J. Appl. Phys., 98 Aug. (2005) 033715.
54 Y.B. Cheng, D.P. Thompson, J. Am. Ceram. Soc., 74 (1991) 1135.
55 Y.B. Cheng, D.P. Thompson, J. Am. Ceram. Soc., 76 (1993) 683.
56 M. Lerch, E. Fueglein, J. Wrba, Z. Anorg., Allg. Chem., 622 (1996) 367.
57 W.H. Baur, M. Lerch, Z. Anorg. Allg. Chem., 622 (1996) 1729.
58 M. Lerch, J. Am. Ceram. Soc., 79 (1996) 2641.
59 M. Lerch, F. Krumeich, R. Hock, Solid State Ionics, 95 (1997) 87.
60 M. Lerch, O. Rahauser, J. Mater. Sci., 32 (1997) 1357.
48
61 M. Lerch, J. Mater. Sci. Lett., 17 (1998) 441.
62 A.T. Tham, C. Rodel, M. Lerch, D. Wang, D.S. Su, A. Klein-Hoffmann, R. Schlogl, Cryst. Res. Technol., 39 (2004) 421.
63 D.I. Bazhanov, A.A. Knizhnik, A.A. Safonov, A.A. Bagatur’yants, M.W. Stoker, A.A. Korkin, J. Appl. Phys., 97 (2005) 044108.
64 J. Wendel, M. Lerch, W. Laqua, J. Solid State Chem., 142 (1999) 163.
65 M. Ohashi, H. Yamamoto, S. Yamanaka, M. Hattori, Mater. Res. Bull., 28 (1993) 513.
66 D.P. Thompson, Proc. 2nd ECRS Conf., Augsburg, (1991) 35.
67 J.D. Loftin, R.D. Clark, AK Hochberg, Process of CVD of Hf and Zr containing oxynitride films, US Patent (2005) 6844271.
68 S. Jeon, C.J. Choi, T.Y. Seong, H. Hwang, Appl. Phys. Lett., 79 (2001) 245.
69 S.J. Clarke, C.W. Michie, M.J. Rosseinsky, J. Solid State Chem., 146 (1999) 399.
70 T. Mishima, M. Matsuda, M. Miyake, Appl. Catal. A: General, 324 (2007) 77.
71 R.B. Von dreele, L. Eyring, A.L. Bowman, J.L. Yarnell, Acta. Cryst., B 31 (1975) 971.
72 M.R. Thornber, D.J.M. Bevan, J. Graham, Acta. Cryst., B 24 (1968) 1183.
73 S. Yu, and H.-S Philip Wong, IEEE Electron Device Lett., 31 (2010) 1455.