簡易檢索 / 詳目顯示

研究生: 林國樹
Lin, Kau-Chu
論文名稱: 使用低溫與三氯氧磷退火製程改善n型碳化矽金氧半場效電晶體的通道電子遷移率
An Improvement in Channel Mobility in n-type 4H-SiC MOSFET Employing Low Temperature and POCl3 Anneal Processes
指導教授: 黃智方
Huang, Chih-Fang
口試委員: 黃智方
Huang, Chih-Fang
李坤彥
Lee, Kung-Yen
蔡銘進
Tsai, Ming-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 53
中文關鍵詞: 三氯氧磷低溫碳化矽通道電子遷移率氧化鋁
外文關鍵詞: POCl3, Low temperature, SiC, Channel mobility, Al2O3
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碳化矽因為具備了優異的特性,例如寬能隙、大臨界電場、高電子飽和速度、高熱傳導係數,是用來製作高功率元件一個很有潛力的材料,但是熱氧化碳化矽當作絕緣層需要很高的溫度(大於1100oC),基板和絕緣層接面特性因而嚴重地變差。
    SiO2/SiC在這個研究主題,我們確認使用三氯氧磷退火技術將磷原子在碳化矽與氧化層介面鈍化的效果,並進一步我們嘗試沉積矽在碳化矽基板上並將上面的矽用低溫氧化(700℃ or 800℃)形成絕緣層,期望盡量避免氧化到基板。進一步研究三氯氧磷退火技術應用在此氧化層與氧化鋁堆疊至此氧化層。
    沉積矽用低溫氧化並接著使用三氯氧磷退火(Si+LTO+POCl3)可將在距離導帶0.2 eV的介面能態密度下降至接近 1×1011 (eV-1cm-2 )。與高溫氧化基板接著使用三氯氧磷退火(HTO+POCl3)可達到的效果接近。使用(Si+LTO+POCl3)製程在MOSFET的場效遷移率可高於90 (cm2/V-s)。但是漏電流大而且良率低,(Si+LTO+POCl3+Al2O3) 絕緣層堆疊可以大幅改善漏電流問題且良率高很多。不過介面能態密度會有些許的上升至4×1011 (eV-1cm-2 )。場效遷移率可保留至60-70 (cm2/V-s)。
    文獻上(HTO+POCl3)製程尚有可靠度的問題,我們初步使用一般操作電場強度3MV/cm stress在每個絕緣層製程。(Si+LTO+POCl3+Al2O3) 絕緣層堆疊有最少的臨界電壓飄移的問題。可能是磷參雜絕緣層較薄,另一個原因推測是氧化鋁材料特性帶有負電荷排斥電子吸附在絕緣層。


    SiC has attracted significant attention for power semiconductor devices because of their superior physical and electrical properties: for instance, wide energy bandgap, large critical electric field, high electron saturation velocity, and high thermal conduc-tivity. However, thermal oxidation of SiC needs high temperature (>1100℃) and de-grades the interface property severely.
    In this thesis, we confirm the effect of phosphorous passivation for the SiO2/4H–SiC interface employing POCl3 annealing. Furthermore, we try to deposit and oxidize Si with a low temperature (700℃ or 800℃) to grow gate dielectric. This way, minimal oxidation of SiC substrate can be anticipated. The POCl3 annealing technique is then applied to the SiO2. A gate dielectric stack structure with Al2O3 on top of the SiO2 is further studied.
    In the process of depositing Si and low temperature dry oxidation followed by POCl3 annealing (Si+LTO+POCl3), the Dit is reduced to approximately 1×1011 (eV-1cm-2 ) at Ec-E=0.2eV similar to the process of high temperature dry oxidation followed by POCl3 annealing (HTO+POCl3). The μFE of MOSFET using Si + LTO + POCl3 process is higher than 90 (cm2/V-s), but the low yield rate and large leakage current are the major problems. The Si+LTO+POCl3 +Al2O3 gate dielectric stack im-proves the leakage current, and the yield is improved, although the Dit is slightly in-creased to 4×1011 (eV-1cm-2 ) at Ec-E=0.2eV, and the μFE can be retained approxi-mately 60-70 (cm2/V-s) .
    The HTO + POCl3 technique has a reliability problem reported from the literature. In this study, a gate voltage corresponding to 3MV/cm is applied to stress and com-pare each gate dielectric process. The Si+LTO+POCl3 +Al2O3 gate dielectric process has the least Vth shift. It is attributed to the thinner thickness of phosphorus-doped SiO2 and the Al2O3 on top of it. One of the possible explanations is that the fixed neg-ative oxide charges in Al2O3 hinder electron injection.

    Chapter 1 Introduction 1 1.1 SiC for wide band-gap materials and utility applications 1 1.2 Choice of SiC polytype for power device 2 1.3 Background of gate dielectric development for SiC devices 2 1.4 Motivation 4 1.5 Outline of the thesis 5 Chapter 2 Fabrication process and electrical characterization 8 2.1 MOSC process 8 2.2 MOSFET process 8 2.3 Measurement technique and electrical characterization 11 Chapter 3 Results and discussion 15 3.1 High temperature dry oxidation + POCl3 anneal (HTO+POCl3 )_first stage 15 3.1.1 HTO+POCl3 _MOSC analysis 15 3.1.2 HTO+POCl3 _MOSFET analysis 16 3.2 Depositing Si + low temperature dry oxidation + POCl3 anneal (Si+LTO+POCl3 )_second stage 16 3.2.1 Si+LTO+POCl3 _MOSC analysis _first experiment 16 3.2.2 Si+LTO+POCl3 _MOSC analysis _second experiment 18 3.3 (Si+LTO+POCl3 +Al2O3) gate dielectric stack _third stage 18 3.3.1 Discussion of gate dielectric stack process 18 3.3.2 Al2O3 quality test experiments _MOSC analysis 19 3.3.3 Comparison of four various types of processes_ MOSC analysis 20 3.3.4 Comparison of five various processes_ MOSFET analysis 21 3.3.5 Reliability measurement 22 Chapter 4 Conclusions and future work 50 References 52

    [1] Leon M. Tolbert, Burak Ozpineci, S. Kamrul Islam, M. S. Chinthavali, “Wide BandGap Semiconductors For Utility Applications,” Naval Research Reviews, 1999.
    [2] C.-M. Zetterling et al.,“Process Technology for Silicon Carbide Devices,” in EMIS
    processing series, IEEE, 2002.
    [3] G. R. Fisher and P. Barnes, “Toward a Unified View of Polytypism in Silicon Carbide,” Phil. Mag. B, vol. 61, no. 2, pp. 217–236, Feb.1990.
    [4] A. R. Powell and L. B. Rowland, “SiC Materials-Progress, Status, and Potential Roadblocks,” Proceedings of the IEEE, vol. 90, no. 6, June 2002
    [5] L. Lipkin and J. Palmour, “Insulator Investigation on SiC for Improved Reliability,” IEEE Transactions on Electron Devices, Vol. 46, No. 3, pp. 525-532, 1999
    [6] Chao-Yang Lu, James A. Cooper, Jr., Fellow, IEEE, Takashi Tsuji, Gilyong Chung, John R. Williams, Kyle McDonald, and Leonard C. Feldman,” Effect of Process Variations and Ambient Temperature on Electron Mobility at the SiO2/4H-SiC In-terface,” IEEE Transactions on Electron Devices, VOL. 50, NO. 7, JULY 2003
    [7] D. Okamoto, H. Yano, K. Hirata, T. Hatayama, and T. Fuyuki, “Improved Inver-sion Channel Mobility in 4H-SiC MOSFETs on Si Face Utilizing Phospho-rus-Doped Gate Oxide,” IEEE Electron Device Lett., vol. 31, no. 7, Jul. 2010
    [8] Y.K. Sharma, A.C. Ahyi, T. Issacs-Smith, X. Shen, S.T. Pantelides, X. Zhu, L.C. Feldman, J. Rozen, J.R. Williams, “Phosphorous passivation of the SiO2/4H–SiC interface,” Solid-State Electronics (2011), 28 October 2011.
    [9] Ryuji Morishita, Hiroshi Yano, Dai Okamoto, Tomoaki Hatayama, and Takashi Fuyuki, “Effect of POCl3 Annealing on Reliability of Thermal Oxides Grown on 4H-SiC,” Materials Science Forum, Vols. 717-720 (2012) pp 739-742, May 2012.
    [10] Thomas Marron, Shinya Takashima, Zhongda Li, and T. Paul Chow, “Impact of
    annealing on ALD Al2O3 gate dielectric for GaN MOS devices,” Phys. Status Solidi C 9, No. 3–4, 907–910 (2012).
    [11] Chih-Sheng Kuo, Jui-Feng Hsu, Szu-Wei Huang, Lurng-Shehng Lee, Ming-Jinn Tsai, and Jenn-Gwo Hwu, “High-k Al2O3 Gate Dielectrics Prepared by Oxida-tion of Aluminum Film in Nitric Acid Followed by High-Temperature Annealing,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 51, NO. 6, JUNE 2004.
    [12] M.A. Capano, R. Santhakumar, R. Venugopal, M.R. Melloch, and J.A. Cooper, Jr., “Phosphorus Implantation into 4H-Silicon Carbide,” Journal of Electronic Materials, vol. 29, no. 2, 2000.
    [13] Y. Negoro, K. Katsumoto, T. Kimoto, and Matsunami, “Electronic behaviors of
    high-dose phosphorus-ion implanted 4H-SiC(0001),” Journal of Applied Phys
    ics, vol. 96, no.1, 2004.
    [14] John Rozen, ” ELECTRONIC PROPERTIES AND RELIABILITY OF THE SiO2/SiC INTERFACE, “ Ph.D. Thesis - ETD - Vanderbilt University, 2008.
    [15] D.J. Lichtenwalner, V. Misra, S. Dhar, S.-H. Ryu, and A. Agarwal,
    “High-mobility enhancement-mode 4H SiC lateral nMOSFETs with atomic layer deposited Al2O3 gate dielectric,” ISDRS 2009, December 9-11, 2009, College
    Park, MD, USA.
    [16] Tomohiro Hatayama, Shiro Hino, Naruhisa Miura, Tatsuo Oomori, and Eisuke Tokumitsu, “Remarkable Increase in the Channel Mobility of SiC-MOSFETs by Controlling the Interfacial SiO2 Layer Between Al2O3 and SiC,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 55, NO. 8, AUGUST 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE