簡易檢索 / 詳目顯示

研究生: 曾德旺
Der-Wang Tzeng
論文名稱: 吳郭魚AMPA受器次單元Gria1電生理特性
Electrophysiological Properties of Tilapia AMPA Receptor Gria1 Subunits
指導教授: 周姽嫄
Wei-Yuan Chow
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2006
畢業學年度: 95
語文別: 中文
論文頁數: 70
中文關鍵詞: 麩胺酸受器去敏感化作用
外文關鍵詞: Glutamate receptor, Desensitization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 麩胺酸是負責脊椎動物大腦中樞神經系統中主要的興奮性神經傳導物質之一。離子通道型麩胺酸受器依其藥理學特性可分為三種次型,分別是AMPA、kainate及NMDA受器。AMPA受器負責脊椎動物中樞神經系統中快速的興奮性神經傳導。Gria1為有顎動物四種AMPA受器單元之一,吳郭魚表現二種來自複製的Gria1基因。脊椎動物每一AMPA受器可有二種splice型式,稱為flip及flop型式,flip型式通常活性較flop型式好。不同於哺乳動物AMPA受器單元,以AMPA受器促效劑刺激吳郭魚Gria1□i (i表示為flip isoform) 時偵測不到離子通道活性,需添加減緩AMPA受器去敏感化作用 (desensitization) 的CTZ (cyclothiazide)才能偵測到促效劑誘發電流。Gria1□□ ( flop isoform)單獨以促效劑刺激即可偵測到誘發電流的產生,顯示吳郭魚Gria1□ flop型式受器活性較flip好。flip及flop型式單元的氨基酸序列的差異在於最後一個穿膜區前的38個氨基酸。比對吳郭魚Gria1□i與其他有硬骨魚及哺乳類的Gria1的flip序列,發現吳郭魚Gria1□i有四個特有的氨基酸與哺乳類不同。我們對flip區域四個氨基酸進行點突變,證實I740 胺基酸參與調控受器的去敏感化速率。N750胺基酸影響CTZ增加受器對kainate親和性及減緩麩胺酸誘發去敏感化作用的能力。I740、A753及R776胺基酸會增加麩胺酸誘發電流相對於kainate誘發電流的比例。Gria1□i與另一個AMPA受器次單元Gria2βi一起表現於爪蟾卵母細胞,由電流表現變大及誘發電流與膜電位呈現直線關係的結果證明Gria1□i能與其他AMPA受器組成具有功能的異構型受器。
    吳郭魚AMPA受器Gria1β C端與p22蛋白質在酵母菌雙雜合系統中有交互作用。為瞭解p22對AMPA受器的影響,我們將p22與帶有Gria1β C端的Gria3αi (3□i/1βC21) 在爪蟾卵母細胞中共同表現。p22可降低3αi/1βC21離子通道麩胺酸相對於kainate的誘發電流比。p22對3αi/1βC21所造成的影響可受CTZ抑制,顯示由p22所造成的影響是透過加速3αi/1βC21之去敏感化作用。


    L-glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system. Ionotropic glutamate receptors are divided into three subtypes, AMPA-, kainate- and NMDA-preferring receptors. AMPA receptors mediate fast excitatory neurotransmission in the vertebrate central nervous system. Oreochomis mossambicus (tilapia) expresses two duplicated Gria1 genes. All vertebrate AMPA receptor genes are alternatively spliced to create two isoforms, flip and flop. In general, AMPA receptors comprising the flip isoform are more active than those comprising the flop isoform. The agonist-activated activities of Gria1□i, i represents the flip isoform, were only detected in the presence of the desensitization attenuator, cyclothiazide. On the other hand, channel activities of Gria1αo, o represents the flop isoform, could be detected in the absence of cyclothiazide, implying that channel of Gria1αo was more active than that of Gria1□i. The Gria1αi and Gria1αo differed only in the 38-amino acid flip/flop region in front of the last transmembrane region. The flip sequence of tilapia Gria1□ differed from that of mammalian Gria1 in four positions, which were individually mutated in this report to study their roles in controlling the tilapia Gria1□ channel properties. Electrophysiological analyses showed that I740 residue is responsible for fast desensitization in the Gria1□i. Substitution of a serine at position 750 increased the binding affinity of kainate, and attenuated the desensitization evoked by glutamate in the presence of cyclothiazide. I740, A753 and R776 residues are responsible for the higher ratio of the glutamate-activated currents over the kainate-activated currents in the Gria1αi. The activated currents recorded from Xenopus oocytes coinjected with Gria1αi and Gria2βi were larger than that from oocytes injected with Gria1αi or Gria2βi only. Furthermore, the glutamate-activated currents in the Gria1αi and Gria2βi coexpressed oocytes displayed a linear current-voltage relationship. These results demonstrated that Gria1αi and Gria2βi can form functional heteromeric receptors.
    Gria1β C-terminal region can interact with p22 in the yeast two-hybrid system and it coprecipitates with p22 in cells coexpressed both proteins. To study the physiological functions of the interaction between p22 and Gria1β C-terminal region, p22 and chimera 3αi/1βC21, which consisted of the Gria3α backbone with the Gria1β C-terminal region, were coexpressed in Xenopus oocytes. The ratio of glutamate-activated currents over the kainate-activated currents recorded in 3αi/1βC21 decreased by coexpressing p22. Addition of cyclothiazide rescued the p22 effects on 3αi/1βC21, suggesting that p22 was involved in increasing the desensitization of 3αi/1βC21 receptor.

    中文摘要……………………………………………………………I 英文摘要…………………………………………………………III 前言………………………………………………………………… 1 材料與法……………………………………………………………12 結果…………………………………………………………………18 討論…………………………………………………………………33 參考文獻……………………………………………………………40 圖表及附錄…………………………………………………………50

    Abe, T., Sugihara, H., Nawa, H., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1992). Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J Biol Chem 267, 13361-13368.
    Abele, R., Svergun, D., Keinanen, K., Koch, M. H., and Madden, D. R. (1999). A molecular envelope of the ligand-binding domain of a glutamate receptor in the presence and absence of agonist. Biochemistry 38, 10949-10957.
    Andersson, O., Stenqvist, A., Attersand, A., and von Euler, G. (2001). Nucleotide sequence, genomic organization, and chromosomal localization of genes encoding the human NMDA receptor subunits NR3A and NR3B. Genomics 78, 178-184.
    Andrade, J., Pearce, S. T., Zhao, H., and Barroso, M. (2004a). Interactions among p22, glyceraldehyde-3-phosphate dehydrogenase and microtubules. Biochem J 384, 327-336.
    Andrade, J., Zhao, H., Titus, B., Timm Pearce, S., and Barroso, M. (2004b). The EF-hand Ca2+-binding protein p22 plays a role in microtubule and endoplasmic reticulum organization and dynamics with distinct Ca2+-binding requirements. Mol Biol Cell 15, 481-496.
    Appel, S. H. (1993). Excitotoxic neuronal cell death in amyotrophic lateral sclerosis. Trends Neurosci 16, 3-5.
    Araki, K., Meguro, H., Kushiya, E., Takayama, C., Inoue, Y., and Mishina, M. (1993). Selective expression of the glutamate receptor channel delta 2 subunit in cerebellar Purkinje cells. Biochem Biophys Res Commun 197, 1267-1276.
    Armstrong, N., Sun, Y., Chen, G. Q., and Gouaux, E. (1998). Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395, 913-917.
    Ascher, P., Bregestovski, P., and Nowak, L. (1988). N-methyl-D-aspartate-activated channels of mouse central neurones in magnesium-free solutions. J Physiol 399, 207-226.
    Ayalon, G., and Stern-Bach, Y. (2001). Functional assembly of AMPA and kainate receptors is mediated by several discrete protein-protein interactions. Neuron 31, 103-113.
    Banke, T. G., Greenwood, J. R., Christensen, J. K., Liljefors, T., Traynelis, S. F., Schousboe, A., and Pickering, D. S. (2001). Identification of amino acid residues in GluR1 responsible for ligand binding and desensitization. J Neurosci 21, 3052-3062.
    Barroso, M. R., Bernd, K. K., DeWitt, N. D., Chang, A., Mills, K., and Sztul, E. S. (1996). A novel Ca2+-binding protein, p22, is required for constitutive membrane traffic. J Biol Chem 271, 10183-10187.
    Baskys, A., and Malenka, R. C. (1991). Agonists at metabotropic glutamate receptors presynaptically inhibit EPSCs in neonatal rat hippocampus. J Physiol 444, 687-701.
    Baude, A., Molnar, E., Latawiec, D., McIlhinney, R. A., and Somogyi, P. (1994). Synaptic and nonsynaptic localization of the GluR1 subunit of the AMPA-type excitatory amino acid receptor in the rat cerebellum. J Neurosci 14, 2830-2843.
    Bettler, B., Boulter, J., Hermans-Borgmeyer, I., O'Shea-Greenfield, A., Deneris, E. S., Moll, C., Borgmeyer, U., Hollmann, M., and Heinemann, S. (1990). Cloning of a novel glutamate receptor subunit, GluR5: expression in the nervous system during development. Neuron 5, 583-595.
    Bettler, B., Egebjerg, J., Sharma, G., Pecht, G., Hermans-Borgmeyer, I., Moll, C., Stevens, C. F., and Heinemann, S. (1992). Cloning of a putative glutamate receptor: a low affinity kainate-binding subunit. Neuron 8, 257-265.
    Bettler, B., and Mulle, C. (1995). Review: neurotransmitter receptors. II. AMPA and kainate receptors. Neuropharmacology 34, 123-139.
    Bianchi, R., and Wong, R. K. (1995). Excitatory synaptic potentials dependent on metabotropic glutamate receptor activation in guinea-pig hippocampal pyramidal cells. J Physiol 487 ( Pt 3), 663-676.
    Blaschke, M., Keller, B. U., Rivosecchi, R., Hollmann, M., Heinemann, S., and Konnerth, A. (1993). A single amino acid determines the subunit-specific spider toxin block of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor channels. Proc Natl Acad Sci U S A 90, 6528-6532.
    Bliss, T. V., and Collingridge, G. L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31-39.
    Boehm, J., Kang, M. G., Johnson, R. C., Esteban, J., Huganir, R. L., and Malinow, R. (2006). Synaptic incorporation of AMPA receptors during LTP is controlled by a PKC phosphorylation site on GluR1. Neuron 51, 213-225.
    Bottai, D., Maler, L., and Dunn, R. J. (1998). Alternative RNA splicing of the NMDA receptor NR1 mRNA in the neurons of the teleost electrosensory system. J Neurosci 18, 5191-5202.
    Boulter, J., Hollmann, M., O'Shea-Greenfield, A., Hartley, M., Deneris, E., Maron, C., and Heinemann, S. (1990). Molecular cloning and functional expression of glutamate receptor subunit genes. Science 249, 1033-1037.
    Brusa, R., Zimmermann, F., Koh, D. S., Feldmeyer, D., Gass, P., Seeburg, P. H., and Sprengel, R. (1995). Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science 270, 1677-1680.
    Burnashev, N., Khodorova, A., Jonas, P., Helm, P. J., Wisden, W., Monyer, H., Seeburg, P. H., and Sakmann, B. (1992). Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells. Science 256, 1566-1570.
    Burnashev, N., and Rozov, A. (2000). Genomic control of receptor function. Cell Mol Life Sci 57, 1499-1507.
    Carvalho, A. L., Duarte, C. B., and Carvalho, A. P. (2000). Regulation of AMPA receptors by phosphorylation. Neurochem Res 25, 1245-1255.
    Chang, H. M., Wu, Y. M., Chang, Y. C., Hsu, Y. C., Hsu, H. Y., Chen, Y. C., and Chow, W. Y. (1998). Molecular and electrophysiological characterizations of fGluR3 alpha, an ionotropic glutamate receptor subunit of a teleost fish. Brain Res Mol Brain Res 57, 211-220.
    Chen, C., Blitz, D. M., and Regehr, W. G. (2002). Contributions of receptor desensitization and saturation to plasticity at the retinogeniculate synapse. Neuron 33, 779-788.
    Chen, Y. C., Kung, S. S., Chen, B. Y., Hung, C. C., Chen, C. C., Wang, T. Y., Wu, Y. M., Lin, W. H., Tzeng, C. S., and Chow, W. Y. (2001). Identifications, classification, and evolution of the vertebrate alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor subunit genes. J Mol Evol 53, 690-702.
    Choi, D. W. (1988). Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623-634.
    Ciabarra, A. M., Sullivan, J. M., Gahn, L. G., Pecht, G., Heinemann, S., and Sevarino, K. A. (1995). Cloning and characterization of chi-1: a developmentally regulated member of a novel class of the ionotropic glutamate receptor family. J Neurosci 15, 6498-6508.
    Cik, M., Chazot, P. L., and Stephenson, F. A. (1994). Expression of NMDAR1-1a (N598Q)/NMDAR2A receptors results in decreased cell mortality. Eur J Pharmacol 266, R1-3.
    Clark, R. A., Gurd, J. W., Bissoon, N., Tricaud, N., Molnar, E., Zamze, S. E., Dwek, R. A., McIlhinney, R. A., and Wing, D. R. (1998). Identification of lectin-purified neural glycoproteins, GPs 180, 116, and 110, with NMDA and AMPA receptor subunits: conservation of glycosylation at the synapse. J Neurochem 70, 2594-2605.
    Collingridge, G. (1987). Synaptic plasticity. The role of NMDA receptors in learning and memory. Nature 330, 604-605.
    Collingridge, G. L., and Lester, R. A. (1989). Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 41, 143-210.
    Das, S., Sasaki, Y. F., Rothe, T., Premkumar, L. S., Takasu, M., Crandall, J. E., Dikkes, P., Conner, D. A., Rayudu, P. V., Cheung, W., et al. (1998). Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 393, 377-381.
    Dunn, R. J., Bottai, D., and Maler, L. (1999). Molecular biology of the apteronotus NMDA receptor NR1 subunit. J Exp Biol 202, 1319-1326.
    Eastwood, S. L., Burnet, P. W., and Harrison, P. J. (1997). GluR2 glutamate receptor subunit flip and flop isoforms are decreased in the hippocampal formation in schizophrenia: a reverse transcriptase-polymerase chain reaction (RT-PCR) study. Brain Res Mol Brain Res 44, 92-98.
    Egebjerg, J., Bettler, B., Hermans-Borgmeyer, I., and Heinemann, S. (1991). Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA. Nature 351, 745-748.
    Egebjerg, J., Kukekov, V., and Heinemann, S. F. (1994). Intron sequence directs RNA editing of the glutamate receptor subunit GluR2 coding sequence. Proc Natl Acad Sci U S A 91, 10270-10274.
    Ehlers, M. D., Tingley, W. G., and Huganir, R. L. (1995). Regulated subcellular distribution of the NR1 subunit of the NMDA receptor. Science 269, 1734-1737.
    Everts, I., Villmann, C., and Hollmann, M. (1997). N-Glycosylation is not a prerequisite for glutamate receptor function but Is essential for lectin modulation. Mol Pharmacol 52, 861-873.
    Foster, A. C., and Fagg, G. E. (1984). Acidic amino acid binding sites in mammalian neuronal membranes: their characteristics and relationship to synaptic receptors. Brain Res 319, 103-164.
    Frandsen, A., and Schousboe, A. (2003). AMPA receptor-mediated neurotoxicity: role of Ca2+ and desensitization. Neurochem Res 28, 1495-1499.
    Gallo, V., Upson, L. M., Hayes, W. P., Vyklicky, L., Jr., Winters, C. A., and Buonanno, A. (1992). Molecular cloning and development analysis of a new glutamate receptor subunit isoform in cerebellum. J Neurosci 12, 1010-1023.
    Gregor, P., Mano, I., Maoz, I., McKeown, M., and Teichberg, V. I. (1989). Molecular structure of the chick cerebellar kainate-binding subunit of a putative glutamate receptor. Nature 342, 689-692.
    Gregor, P., O'Hara, B. F., Yang, X., and Uhl, G. R. (1993). Expression and novel subunit isoforms of glutamate receptor genes GluR5 and GluR6. Neuroreport 4, 1343-1346.
    Herb, A., Burnashev, N., Werner, P., Sakmann, B., Wisden, W., and Seeburg, P. H. (1992). The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits. Neuron 8, 775-785.
    Higuchi, M., Single, F. N., Kohler, M., Sommer, B., Sprengel, R., and Seeburg, P. H. (1993). RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell 75, 1361-1370.
    Hollmann, M., Boulter, J., Maron, C., Beasley, L., Sullivan, J., Pecht, G., and Heinemann, S. (1993). Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron 10, 943-954.
    Hollmann, M., Hartley, M., and Heinemann, S. (1991). Ca2+ permeability of KA-AMPA--gated glutamate receptor channels depends on subunit composition. Science 252, 851-853.
    Hollmann, M., and Heinemann, S. (1994). Cloned glutamate receptors. Annu Rev Neurosci 17, 31-108.
    Ishimaru, H., Kamboj, R., Ambrosini, A., Henley, J. M., Soloviev, M. M., Sudan, H., Rossier, J., Abutidze, K., Rampersad, V., Usherwood, P. N., et al. (1996). A unitary non-NMDA receptor short subunit from Xenopus: DNA cloning and expression. Receptors Channels 4, 31-49.
    Jones, M. V., and Westbrook, G. L. (1996). The impact of receptor desensitization on fast synaptic transmission. Trends Neurosci 19, 96-101.
    Kashiwabuchi, N., Ikeda, K., Araki, K., Hirano, T., Shibuki, K., Takayama, C., Inoue, Y., Kutsuwada, T., Yagi, T., Kang, Y., and et al. (1995). Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR delta 2 mutant mice. Cell 81, 245-252.
    Keinanen, K., Wisden, W., Sommer, B., Werner, P., Herb, A., Verdoorn, T. A., Sakmann, B., and Seeburg, P. H. (1990). A family of AMPA-selective glutamate receptors. Science 249, 556-560.
    Kleckner, N. W., and Dingledine, R. (1988). Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 241, 835-837.
    Kohler, M., Kornau, H. C., and Seeburg, P. H. (1994). The organization of the gene for the functionally dominant alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor subunit GluR-B. J Biol Chem 269, 17367-17370.
    Koltchine, V. V., Anantharam, V., Bayley, H., and Treistman, S. N. (1996). Alternative splicing of the NMDAR1 subunit affects modulation by calcium. Brain Res Mol Brain Res 39, 99-108.
    Kraus, J. E., Nadler, J. V., and McNamara, J. O. (1996). Regulation of alternative splicing of NMDAR1 in the kindling model. Brain Res Mol Brain Res 41, 97-104.
    Kullmann, D. M., Asztely, F., and Walker, M. C. (2000). The role of mammalian ionotropic receptors in synaptic plasticity: LTP, LTD and epilepsy. Cell Mol Life Sci 57, 1551-1561.
    Kuner, T., Wollmuth, L. P., Karlin, A., Seeburg, P. H., and Sakmann, B. (1996). Structure of the NMDA receptor channel M2 segment inferred from the accessibility of substituted cysteines. Neuron 17, 343-352.
    Kung, S. S., Wu, Y. M., and Chow, W. Y. (1996). Characterization of two fish glutamate receptor cDNA molecules: absence of RNA editing at the Q/R site. Brain Res Mol Brain Res 35, 119-130.
    Kutsuwada, T., Kashiwabuchi, N., Mori, H., Sakimura, K., Kushiya, E., Araki, K., Meguro, H., Masaki, H., Kumanishi, T., Arakawa, M., and et al. (1992). Molecular diversity of the NMDA receptor channel. Nature 358, 36-41.
    Larm, J. A., Cheung, N. S., and Beart, P. M. (1997). Apoptosis induced via AMPA-selective glutamate receptors in cultured murine cortical neurons. J Neurochem 69, 617-622.
    Lee-Rivera, I., Zarain-Herzberg, A., and Lopez-Colome, A. M. (2003). Developmental expression of N-methyl-D-aspartate glutamate receptor 1 splice variants in the chick retina. J Neurosci Res 73, 369-383.
    Leever, J. D., Clark, S., Weeks, A. M., and Partin, K. M. (2003). Identification of a site in GluR1 and GluR2 that is important for modulation of deactivation and desensitization. Mol Pharmacol 64, 5-10.
    Lemaire, P., Garrett, N., and Gurdon, J. B. (1995). Expression cloning of Siamois, a Xenopus homeobox gene expressed in dorsal-vegetal cells of blastulae and able to induce a complete secondary axis. Cell 81, 85-94.
    Lin, X., and Barber, D. L. (1996). A calcineurin homologous protein inhibits GTPase-stimulated Na-H exchange. Proc Natl Acad Sci U S A 93, 12631-12636.
    Linden, D. J. (1994). Long-term synaptic depression in the mammalian brain. Neuron 12, 457-472.
    Liu, J. O. (2003). Endogenous protein inhibitors of calcineurin. Biochem Biophys Res Commun 311, 1103-1109.
    Lodge, D., Bond, A., O'Neill, M. J., Hicks, C. A., and Jones, M. G. (1996). Stereoselective effects-of 2,3-benzodiazepines in vivo: electrophysiology and neuroprotection studies. Neuropharmacology 35, 1681-1688.
    Lomeli, H., Mosbacher, J., Melcher, T., Hoger, T., Geiger, J. R., Kuner, T., Monyer, H., Higuchi, M., Bach, A., and Seeburg, P. H. (1994). Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266, 1709-1713.
    Lomeli, H., Sprengel, R., Laurie, D. J., Kohr, G., Herb, A., Seeburg, P. H., and Wisden, W. (1993). The rat delta-1 and delta-2 subunits extend the excitatory amino acid receptor family. FEBS Lett 315, 318-322.
    LoTurco, J. J., Owens, D. F., Heath, M. J., Davis, M. B., and Kriegstein, A. R. (1995). GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15, 1287-1298.
    Madden, D. R. (2002). The structure and function of glutamate receptor ion channels. Nat Rev Neurosci 3, 91-101.
    Malinow, R., and Malenka, R. C. (2002). AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25, 103-126.
    Martin, L. J., Furuta, A., and Blackstone, C. D. (1998). AMPA receptor protein in developing rat brain: glutamate receptor-1 expression and localization change at regional, cellular, and subcellular levels with maturation. Neuroscience 83, 917-928.
    Masu, M., Tanabe, Y., Tsuchida, K., Shigemoto, R., and Nakanishi, S. (1991). Sequence and expression of a metabotropic glutamate receptor. Nature 349, 760-765.
    Matsumoto, M., Miyake, Y., Nagita, M., Inoue, H., Shitakubo, D., Takemoto, K., Ohtsuka, C., Murakami, H., Nakamura, N., and Kanazawa, H. (2001). A serine/threonine kinase which causes apoptosis-like cell death interacts with a calcineurin B-like protein capable of binding Na(+)/H(+) exchanger. J Biochem (Tokyo) 130, 217-225.
    Meguro, H., Mori, H., Araki, K., Kushiya, E., Kutsuwada, T., Yamazaki, M., Kumanishi, T., Arakawa, M., Sakimura, K., and Mishina, M. (1992). Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 357, 70-74.
    Meldrum, B. (1985). Possible therapeutic applications of antagonists of excitatory amino acid neurotransmitters. Clin Sci (Lond) 68, 113-122.
    Meldrum, B. S. (1994). The role of glutamate in epilepsy and other CNS disorders. Neurology 44, S14-23.
    Monaghan, D. T., Bridges, R. J., and Cotman, C. W. (1989). The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol 29, 365-402.
    Monyer, H., Seeburg, P. H., and Wisden, W. (1991). Glutamate-operated channels: developmentally early and mature forms arise by alternative splicing. Neuron 6, 799-810.
    Monyer, H., Sprengel, R., Schoepfer, R., Herb, A., Higuchi, M., Lomeli, H., Burnashev, N., Sakmann, B., and Seeburg, P. H. (1992). Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256, 1217-1221.
    Mori, H., Masaki, H., Yamakura, T., and Mishina, M. (1992). Identification by mutagenesis of a Mg(2+)-block site of the NMDA receptor channel. Nature 358, 673-675.
    Moriyoshi, K., Masu, M., Ishii, T., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1991). Molecular cloning and characterization of the rat NMDA receptor. Nature 354, 31-37.
    Mumby, M. C., and Walter, G. (1993). Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiol Rev 73, 673-699.
    Nakajima, Y., Iwakabe, H., Akazawa, C., Nawa, H., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1993). Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. J Biol Chem 268, 11868-11873.
    Nakanishi, N., Shneider, N. A., and Axel, R. (1990). A family of glutamate receptor genes: evidence for the formation of heteromultimeric receptors with distinct channel properties. Neuron 5, 569-581.
    Nakanishi, S., Masu, M., Bessho, Y., Nakajima, Y., Hayashi, Y., and Shigemoto, R. (1994). Molecular diversity of glutamate receptors and their physiological functions. Exs 71, 71-80.
    Nicoll, R. A., and Malenka, R. C. (1995). Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377, 115-118.
    Okabe, S., Miwa, A., and Okado, H. (1999). Alternative splicing of the C-terminal domain regulates cell surface expression of the NMDA receptor NR1 subunit. J Neurosci 19, 7781-7792.
    Okamoto, N., Hori, S., Akazawa, C., Hayashi, Y., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1994). Molecular characterization of a new metabotropic glutamate receptor mGluR7 coupled to inhibitory cyclic AMP signal transduction. J Biol Chem 269, 1231-1236.
    Olney, J. W. (1990). Excitotoxic amino acids and neuropsychiatric disorders. Annu Rev Pharmacol Toxicol 30, 47-71.
    Ottiger, H. P., Gerfin-Moser, A., Del Principe, F., Dutly, F., and Streit, P. (1995). Molecular cloning and differential expression patterns of avian glutamate receptor mRNAs. J Neurochem 64, 2413-2426.
    Paas, Y. (1998). The macro- and microarchitectures of the ligand-binding domain of glutamate receptors. Trends Neurosci 21, 117-125.
    Pang, T., Hisamitsu, T., Mori, H., Shigekawa, M., and Wakabayashi, S. (2004). Role of calcineurin B homologous protein in pH regulation by the Na+/H+ exchanger 1: tightly bound Ca2+ ions as important structural elements. Biochemistry 43, 3628-3636.
    Paperna, T., Lamed, Y., and Teichberg, V. I. (1996). CDNA cloning of chick brain alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors reveals conservation of structure, function and post-transcriptional processes with mammalian receptors. Brain Res Mol Brain Res 36, 101-113.
    Partin, K. M. (2001). Domain interactions regulating ampa receptor desensitization. J Neurosci 21, 1939-1948.
    Partin, K. M., Bowie, D., and Mayer, M. L. (1995). Structural determinants of allosteric regulation in alternatively spliced AMPA receptors. Neuron 14, 833-843.
    Partin, K. M., Fleck, M. W., and Mayer, M. L. (1996). AMPA receptor flip/flop mutants affecting deactivation, desensitization, and modulation by cyclothiazide, aniracetam, and thiocyanate. J Neurosci 16, 6634-6647.
    Partin, K. M., Patneau, D. K., and Mayer, M. L. (1994). Cyclothiazide differentially modulates desensitization of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor splice variants. Mol Pharmacol 46, 129-138.
    Partin, K. M., Patneau, D. K., Winters, C. A., Mayer, M. L., and Buonanno, A. (1993). Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin A. Neuron 11, 1069-1082.
    Pellegrini-Giampietro, D. E., Gorter, J. A., Bennett, M. V., and Zukin, R. S. (1997). The GluR2 (GluR-B) hypothesis: Ca(2+)-permeable AMPA receptors in neurological disorders. Trends Neurosci 20, 464-470.
    Pin, J. P., and Bockaert, J. (1995). Get receptive to metabotropic glutamate receptors. Curr Opin Neurobiol 5, 342-349.
    Puchalski, R. B., Louis, J. C., Brose, N., Traynelis, S. F., Egebjerg, J., Kukekov, V., Wenthold, R. J., Rogers, S. W., Lin, F., Moran, T., and et al. (1994). Selective RNA editing and subunit assembly of native glutamate receptors. Neuron 13, 131-147.
    Quirk, J. C., Siuda, E. R., and Nisenbaum, E. S. (2004). Molecular determinants responsible for differences in desensitization kinetics of AMPA receptor splice variants. J Neurosci 24, 11416-11420.
    Ravindranathan, A., Parks, T. N., and Rao, M. S. (1996). Flip and flop isoforms of chick brain AMPA receptor subunits: cloning and analysis of expression patterns. Neuroreport 7, 2707-2711.
    Ravindranathan, A., Parks, T. N., and Rao, M. S. (1997). New isoforms of the chick glutamate receptor subunit GluR4: molecular cloning, regional expression and developmental analysis. Brain Res Mol Brain Res 50, 143-153.
    Rozov, A., Jerecic, J., Sakmann, B., and Burnashev, N. (2001). AMPA receptor channels with long-lasting desensitization in bipolar interneurons contribute to synaptic depression in a novel feedback circuit in layer 2/3 of rat neocortex. J Neurosci 21, 8062-8071.
    Sakimura, K., Bujo, H., Kushiya, E., Araki, K., Yamazaki, M., Yamazaki, M., Meguro, H., Warashina, A., Numa, S., and Mishina, M. (1990). Functional expression from cloned cDNAs of glutamate receptor species responsive to kainate and quisqualate. FEBS Lett 272, 73-80.
    Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463-5467.
    Schiffer, H. H., Swanson, G. T., and Heinemann, S. F. (1997). Rat GluR7 and a carboxy-terminal splice variant, GluR7b, are functional kainate receptor subunits with a low sensitivity to glutamate. Neuron 19, 1141-1146.
    Schoepp, D. D., and Conn, P. J. (1993). Metabotropic glutamate receptors in brain function and pathology. Trends Pharmacol Sci 14, 13-20.
    Seeburg, P. H. (1996). The role of RNA editing in controlling glutamate receptor channel properties. J Neurochem 66, 1-5.
    Seeburg, P. H. (1997). Neurodegeneration. A silent channel opens its gates. Nature 388, 716-717.
    Sheng, M., Cummings, J., Roldan, L. A., Jan, Y. N., and Jan, L. Y. (1994). Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368, 144-147.
    Soloviev, M. M., and Barnard, E. A. (1997). Xenopus oocytes express a unitary glutamate receptor endogenously. J Mol Biol 273, 14-18.
    Sommer, B., Keinanen, K., Verdoorn, T. A., Wisden, W., Burnashev, N., Herb, A., Kohler, M., Takagi, T., Sakmann, B., and Seeburg, P. H. (1990). Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249, 1580-1585.
    Sommer, B., Kohler, M., Sprengel, R., and Seeburg, P. H. (1991). RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67, 11-19.
    Sommer, B., and Seeburg, P. H. (1992). Glutamate receptor channels: novel properties and new clones. Trends Pharmacol Sci 13, 291-296.
    Standley, S., and Baudry, M. (2000). The role of glycosylation in ionotropic glutamate receptor ligand binding, function, and trafficking. Cell Mol Life Sci 57, 1508-1516.
    Stevens, C. F. (1996). Spatial learning and memory: the beginning of a dream. Cell 87, 1147-1148.
    Sucher, N. J., Akbarian, S., Chi, C. L., Leclerc, C. L., Awobuluyi, M., Deitcher, D. L., Wu, M. K., Yuan, J. P., Jones, E. G., and Lipton, S. A. (1995). Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. J Neurosci 15, 6509-6520.
    Sun, Y., Olson, R., Horning, M., Armstrong, N., Mayer, M., and Gouaux, E. (2002). Mechanism of glutamate receptor desensitization. Nature 417, 245-253.
    Suzuki, E., Kessler, M., and Arai, A. C. (2005). C-terminal truncation affects kinetic properties of GluR1 receptors. Mol Cell Neurosci 29, 1-10.
    Tanabe, Y., Masu, M., Ishii, T., Shigemoto, R., and Nakanishi, S. (1992). A family of metabotropic glutamate receptors. Neuron 8, 169-179.
    Tsien, J. Z., Huerta, P. T., and Tonegawa, S. (1996). The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87, 1327-1338.
    Wada, K., Dechesne, C. J., Shimasaki, S., King, R. G., Kusano, K., Buonanno, A., Hampson, D. R., Banner, C., Wenthold, R. J., and Nakatani, Y. (1989). Sequence and expression of a frog brain complementary DNA encoding a kainate-binding protein. Nature 342, 684-689.
    Werner, P., Voigt, M., Keinanen, K., Wisden, W., and Seeburg, P. H. (1991). Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells. Nature 351, 742-744.
    Winkler, A., Mahal, B., Zieglgansberger, W., and Spanagel, R. (1999). Accurate quantification of the mRNA of NMDAR1 splice variants measured by competitive RT-PCR. Brain Res Brain Res Protoc 4, 69-81.
    Wollmuth, L. P., Kuner, T., and Sakmann, B. (1998). Intracellular Mg2+ interacts with structural determinants of the narrow constriction contributed by the NR1-subunit in the NMDA receptor channel. J Physiol 506 ( Pt 1), 33-52.
    Wu, Y. M., Kung, S. S., Chen, J., and Chow, W. Y. (1996). Molecular analysis of cDNA molecules encoding glutamate receptor subunits, fGluR1 alpha and fGluR1 beta, of Oreochromis sp. DNA Cell Biol 15, 717-725.
    Zheng, X., Zhang, L., Durand, G. M., Bennett, M. V., and Zukin, R. S. (1994). Mutagenesis rescues spermine and Zn2+ potentiation of recombinant NMDA receptors. Neuron 12, 811-818.
    Zuo, J., De Jager, P. L., Takahashi, K. A., Jiang, W., Linden, D. J., and Heintz, N. (1997). Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature 388, 769-773.

    康世旭 (1996)。兩個吳郭魚於腦麩胺酸受器,fGRIA2與fGRIA2的基因特性分
    析。清華大學輻射生物研究所博士論文。
    陳柏苑 (1996)。脊椎動物離子通道型麩胺酸受器之種類分析。清華大學輻射生物研究所碩士論文。
    吳怡宓 (1998)。吳郭魚麩胺酸受器cDNA之選殖及受器基因於發育不同時期表現之研究。清華大學輻射生物研究所博士論文。
    洪志昌 (1998)。斑馬魚離子通道型麩胺酸受器之種類分析。清華大學輻射生物研究所碩士論文。
    曾德旺 (1998)。魚類麩胺酸嵌合體受器fGRIA3α/1α之電生理特性研究。清華大學輻射生物研究所碩士論文。
    范國賢 (2000)。魚類 fGRIA1α(i)及fGRIA3α(i)麩胺酸嵌合體受器之電生理特性研究。國立清華大學生命科學研究所碩士論文。.
    林明宏 (2001)。硬骨魚類離子通道型麩胺酸受器次單元C端型式種類的分析。清華大學生命科學研究所碩士論文。
    林才祐 (2003)。探討硬骨魚類kainate受器次單元RNA editing。清華大學生命科學研究所碩士論文。
    駱明瑜 (2006)。吳郭魚麩胺酸受器單元fGluR1α(i)與其它AMPA受器單元形成異構型受器之電生理研究。清華大學生命科學研究所碩士論文。
    林煒翔 (2006)。分析吳郭魚AMPA受器次單元tfGRIA1去敏感化作用。清華大學生命科學研究所博士論文。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE