簡易檢索 / 詳目顯示

研究生: 王宗涵
Wang, Chung Han
論文名稱: 利用多標籤圖形切割的非監督式影像分割
Unsupervised Image Segmentation using Multi-label Graph Cuts
指導教授: 張隆紋
Chang, Long Wen
口試委員: 陳永昌
陳朝欽
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 40
中文關鍵詞: 影像分割圖形切割
外文關鍵詞: image segmentation, graph cuts
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 影像分割是影像處理和電腦視覺領域的一個重要議題。由於影像包含了複雜的資訊,有效率地分割出前景物體是具挑戰性的問題。近來許多方法都利用圖形切割進行最佳化,因為它能成功地結合顏色和邊緣資訊。然而分割的結果相當依賴選用的種子,要自動地取得可靠的種子是十分困難的。為了解決這個問題,我們提出一個自動式的影像分割架構。相較於傳統的雙標籤圖形切割,多標籤圖形切割的結果較不依賴選用的種子。我們的方法利用多標籤圖形切割將影像分割成多個區塊,接著再將這些區塊分類為物體和背景。其中還引用了標準差來調整各項屬性的重要性。實驗顯示提出的方法產生了較過去自動式方法更準確的分割結果,而且比得上互動式方法。


    Image segmentation is an important issue in image editing and computer vision. Due to the complexity of information in images, efficient extraction of a foreground object is a challenging problem. Recently, several approaches based on optimization by graph cuts have been developed which successfully combine the color feature with the edge information. A problem is that the segmentation results heavily depend on the seeds selection. However, it is difficult to obtaining reliable seeds automatically. To overcome this problem, we propose an automatic scheme for image segmentation. Compare to the classical binary-label graph cuts, the results by the multi-label graph cuts do not heavily depend on the seeds selection. Our method uses the multi-label graph cuts to separate an image into multiple segments, and then classify the segments into the object and the background. We introduce the standard deviation to adapt the importance between the properties in our method. Experiments show that the proposed method yields more accurate segmentation results than the previous automatic approach and is comparable to the interactive approach.

    Chapter 1 Introduction 1 Chapter 2 Related Works 3 Chapter 3 Proposed Method 6 3.1 Seed extraction 7 3.2 Multi-label graph cuts 8 3.3 Figure-ground segmentation 17 Chapter 4 Experiment Results 23 Chapter 5 Conclusion 38 Reference 39

    [1] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph cuts,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 11, pp. 1222-1239, 2001.
    [2] Y. Boykov and M.-P. Jolly, “Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images,” IEEE International Conference on Computer Vision, vol. 1, pp. 105-112, 2001.
    [3] C. Rother, V. Kolmogorov, and A. Blake, “Grabcut: interactive foreground extraction using iterated graph cuts,” ACM SIGGRAPH, pp. 309–314, 2004.
    [4] Y. Li, J. Sun, C.-K Tang, and H.-Y. Shum, “Lazy Snapping,” ACM SIGGRAPH, pp. 303-308, 2004.
    [5] H. Lombaert, Y. Sun, L. Grady, and C. Xu, “A multilevel banded graph cuts method for fast image segmentation,” IEEE International Conference on Computer Vision, vol. 1, pp. 259-265, 2005.
    [6] Y. Fu, J. Cheng, Z. Li, and H. Lu, “Saliency cuts: An automatic approach to object segmentation,” IEEE International Conference on Pattern Recognition, pp. 1–4, 2008.
    [7] C. Jung, B. Kim, and C. Kim, “Automatic segmentation of salient objects using iterative reversible graph cut,” IEEE International Conference on Multimedia and Expo, pp. 590–595, 2010.
    [8] S. Wang and J. M. Siskind, “Image segmentation with ratio cut,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 6, pp. 675-690, 2003.
    [9] Z. Wu and R. Leahy, “An optimal graph theoretic approach to data clustering: theory and its application to image segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.15, no. 11, pp. 1101-1113, 1993.
    [10] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 888-905, 2000.
    [11] B. Fulkerson, “Graph Cuts Energy Minimization for Matlab (GCMex)” [Online]. Available: http://vision.ucla.edu/~brian/gcmex.html. [Accessed: Jan. 28, 2016]
    [12] B. Fulkerson, A. Vedaldi, and S. Soatto, “Class segmentation and object localization with superpixel neighborhoods,” IEEE International Conference on Computer Vision, pp. 670-677, 2009.
    [13] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 9, pp. 1124-1137, 2004.
    [14] V. Kolmogorov and R. Zabih, “What energy functions can be minimized via graph cuts?,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 2, pp. 147-159, 2004.
    [15] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour Detection and Hierarchical Image Segmentation.” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 5, pp. 898-916, 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE