簡易檢索 / 詳目顯示

研究生: 陳右儒
Chen Yu-Ju
論文名稱: 以原子力顯微術機械力微影製作金屬奈米線和奈米結構
Fabrication of metal nanowires and nanostructures by atomic force microscopy nanomachining
指導教授: 林鶴南
Heh-Nan Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 55
中文關鍵詞: 原子力顯微術機械力微影金屬奈米線奈米電極電阻率
外文關鍵詞: atomic force microscopy, nanomachining, metal nanowire, nanoelectrode, resistivity
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用原子力顯微術在單層阻劑上施加機械力微影,結合蒸鍍系統和lift-off步驟,成功製作出最小線寬達40奈米之五種不同的金屬奈米線,包括金、銅、鎳、鋁、鈦等,也成功地將奈米金屬線陣列製作在電極間。此外,我們量測此五種金屬單一奈米線的電性並且計算出它們的電阻率,亦將得到的電阻率與文獻中和塊材的電阻率做比較。我們發現,我們得到的電阻率和文獻中的電阻率有良好的符合;此外,對於金、鎳、鋁而言,奈米線的電阻率約比塊材電阻率大5~10倍;而對於銅、鈦這些相對較易氧化的奈米線而言,奈米線的電阻率則比塊材大超過10倍以上。進一步地,藉由對奈米金屬線做加工,也成功地製做出最小達30奈米並且規則的奈米電極缺口,和矩形的奈米結構。


    A convenient method for the fabrication of metal nanowires by a combination of atomic force microscopy nanoscratching on a single-layer resist and lift-off process is presented. Various metal nanowires, including Au, Cu, Ni, Al, and Ti nanowires, with widths as small as 40 nm are successfully fabricated. The electrical resistivities of the nanowires have also been obtained and are found to be in good agreement with reported values. For Au, Ni, and Al nanowires, the electrical resistivities are roughly 5-10 times higher than bulk values. For Cu and Ti nanowires, on the other hand, the electrical resistivities are even higher due to more oxidation. In addition, other nanostructures, including well-defined nanoelectrodes with gaps as small as 30 nm and rectangular nanostructures are fabricated by additional cuttings on a metal nanowire.

    Contents Chapter 1 Introduction...1 1.1 Metal 1.2 Fabrication of Metal Nanowires by AFM Nanomachining 1.3 Motivation Chapter 2 Literature Review...5 2.1 Development of Electronic Transport Mechanism Studies of Metal Nanowire 2.2 Development of Metal Nanowire Fabrication by AFM Nanoscratching 2.3 Fabrication of Nanogap Metal Electrode Chapter 3 Experimental Instruments and Procedures...20 3.1 Experimental Instruments 3.1.1 Atomic Force Microscopy 3.1.2 E-beam Evaporator 3.2 Experimental Procedures 3.2.1 Metal Nanowire Fabrication 3.2.1.1 Sample Preparation 3.2.1.2 PMMA Preparation 3.2.1.3 Spin-Coating 3.2.1.4 PMMA Scratching 3.2.1.6 Lift-Off 3.2.2 Electrical Resistivity Measurement 3.2.3 Gas Sensor Fabrication 3.2.3.1 Procedure A 3.2.3.2 Procedure B 3.2.3.3 Procedure C 3.2.4 Nanoelectrode Fabrication Chapter 4 Metal Nanowires and Nanoelectrodes...36 4.1 Metal Nanowires 4.2 Metal Nanowires for Gas Sensor 4.3 Nanoelectrodes Chapter 5 Metal Nanowire Resistivities...46 Chapter 6 Conclusions...51 Reference...53

    Reference
    1. C. Durkan and M. E. Welland, Phys. Rev. B 61, 14215 (2000)
    2. V. Rodrigues and D. Ugarte, Nanotechnology 13, 404 (2002)
    3. D. J. Sellmyer, M. Zheng, and R. Skomski, J. Phys.: Condens. Matter 13, R433 (2001)
    4. J-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, Phys. Rev. B 64, 045411 (2001)
    5. G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, J. Appl. Phys. 90, 3825 (2001)
    6. G. Schindler, G. Steinlesberger, M. Engelhardt, and W. Steinhögl, Solid-State Electronics 47, 1233 (2003)
    7. W. Wu, R. Jonckheere, Z. Tökei, S. H. Brongersma, M. Van Hove, and K. Maex, J. Vac. Sci. Technol. B 22, L11 (2004)
    8. M. Yun, N. V. Myung, R. P. Vasquez, C. Lee, E. Menke, and R. M. Penner, Nano Lett. 4, 419 (2004)
    9. B. J. Murray, E. C. Walter, and R. M. Penner, Nano Lett. 4, 665 (2004)
    10. O. K. Varghese, G. K. Mor, C. A. Grimes, M. Paulose, and N. Mukherjee, J. Nanosci. Nanotechno. 4, 733 (2004)
    11. C. Z. Li, H. Sha, and N. J. Tao, Phys. Rev. B 58, 6775 (1998)
    12. Z. C. Li, H. X. He, A. Bogozi, J. S. Bunch, and N. J. Tao, Appl. Phys. Lett. 76, 1333 (2000)
    13. E. C. Walter, F. Favier, and R. M. Penner, Anal. Chem. 74, 1546 (2002)
    14. E. C. Walter, R. M. Penner, H. Liu, K. H. Ng, M. P. Zach and F. Favier, Surf. Interface Anal. 34, 409 (2002)
    15. Y. G. Lee and T. C. Chou, Electroanal. 15, 1589 (2003)
    16. A. C. B. Lovell, Proc. Roy. Soc. A 157, 311 (1936).
    17. K. Fuchs, Proc. Cambridge Philos. Soc. 34, 100 (1938)
    18. E. H. Sondheimer, Adv. Phys. 1, 1 (1952)
    19. R. G. Chambers, Proc. R. Soc. London, Ser. A 202, 375 (1950)
    20. A. F. Mayadas, M. Shatzkes, and M. Janak, Appl. Phys. Lett. 14, 345 (1969)
    21. A. F. Mayadas and M. Shatzkes, Phys. Rev. B 1, 1382 (1970)
    22. Ratan Lal, Phys. Rev. B 68, 115417 (2003)
    23. W. Steinhögl, G. Schindler, G. Steinlesberger, and M. Engelhardt, Phys. Rev. B 66, 075414 (2002)
    24. W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt, Phys. Rev. B 97, 023706 (2005)
    25. M. E. Toimil Molares, E. M. Höhberger, Ch. Schaeflein, R. H. Blick, R. Neumann, and C. Trautmann, Appl. Phys. Lett. 82, 2139 (2003)
    26. H. T. Soh, K. W. Guarini, and C. F. Quate, Scanning Probe Lithography (Kluwer, Boston) (2001)
    27. R. M. Nyffenegger and R. M. Penner, Chem. Rev. 97, 1195 (1997)
    28. D. Wouters and U. S. Schubert, Angew. Chem. Int. Ed. 43, 2480 (2004)
    29. T. Sumomogi, T. Endo, K. Kuwahara, R. Kaneko, T. Miyamoto, J. Vac. Sci. Technol. B 13, 1257 (1994)
    30. M. Wendel, S. Kühn, H. Lorenz, J. P. Kotthaus, and M. Holland, Appl. Phys. Lett. 65, 1775 (1994)
    31. B. Klehn and U. Kunze, J. Appl. Phys. 85, 3897 (1999)
    32. L. L. Sohn and R. L. Willett, Appl. Phys. Lett. 67, 1552 (1995)
    33. V. Bouchiat and D. Esteve, Appl. Phys. Lett. 69, 3098 (1996)
    34. S. Hu, A. Hamidi, S. Altmeyer, T. Köster, B. Spangenberg, and H. Kurz, J. Vac. Sci. Technol. B 16, 2822 (1998)
    35. L. Santinacci, T. Djenizian, and P. Schmuki, Appl. Phys. Lett. 79, 1882 (2001)
    36. L. A. Porter, A. E. Ribbe, and J. M. Buriak, Nano. Lett. 3, 1043 (2003)
    37. J-H. Hsu, C-Y. Lin, and H-N. Lin, J. Vac. Sci. Technol. B 22, 2768 (2004)
    38. H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, Appl. Phys. Lett. 75, 301 (1999)
    39. D. R. Strachan, D. E. Smith, D. E. Johnston, T. H. Park, M. J. Therien, D. A. Bonnell, and A. T. Johnson, Appl. Phys. Lett. 86, 043109 (2005)
    40. M. M. Deshmukh, A. L. Prieto, Q. Gu, and H. K. Park, Nano Lett. 3, 1383 (2003)
    41. F. Chen, Q. Qing, L. Ren, Z. Wu, and Z. Liu, Appl. Phys. Lett. 86, 123105 (2005)
    42. K. Liu, P. Avouris, J. Bucchignano, R. Martel, S. Sun, and J. Michl, Appl. Phys. Lett. 80, 865 (2002)
    43. D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, Nature 403, 635 (2000)
    44. M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Science 278, 252 (1997)
    45. R. H. M. Smit, Y. Noat, C. Untiedt, N. D. Lang, M. C. van Hemert, and J. M. van Ruitenbeek, Nature 419, 906 (2002)
    46. J. Chung, K. H. Lee, and J. Lee, Nano Lett. 3, 1029 (2003)
    47. I. Heller, J. Kong, H. A. Heerinh, K. A. Williams, S. G. Lemay, and C. Dekker, Nano Lett. 5, 137 (2005)
    48. T. Miyazaki, K. Kobayashi, T. Horiuchi, H. Yamada, and K. Matsusuige, Jpn. J. Appl. Phys. Part 1 40, 4365 (2001)
    49. H. Zhang, S. W. Chung, and C. A. Mirkin, Nano Lett. 3, 43 (2003)
    50. P. Vettiger, M. Despont, U. Drechsler, U. Dürig, W. Häberle, M. I. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. K. Rinnig, IBM J. Res. Dev 44, 323 (2000)
    51. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett 49, 56 (1982)
    52. G. Binnig, C. F. Quate and Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986)
    53. J. Emsley, The Elements (Oxford: Clarendon) (1989)
    54. J. Jorritsma, M. A. M. Gijs, J. M. Kerkhof, and J. G. H. Stienen, Nanotechnology 7, 263 (1996)
    55. M. Calleja, M. Tello, J. Anguita, F. García, and R. García, Appl. Phys. Lett. 79, 2471 (2001)
    56. A. Bietsch and B. Michel, Appl. Phys. Lett. 80, 3346 (2002)
    57. Y. D. Park, K. B. Jung, M. Overberg, D. Temple, S. J. Pearton, and P. H. Holloway, J. Vac. Sci. Technol. B 18, 16 (2000)
    58. E. S. Snow and P. M. Campbell, Science 270, 1639 (1995).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE