研究生: |
王鼎雄 Ding-Hsiung Wang |
---|---|
論文名稱: |
切換電容導向之時鐘網路建構方法 Switched Capacitance-Driven Clock Network Construction |
指導教授: |
王廷基
Ting-Chi Wang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 27 |
中文關鍵詞: | 時鐘樹 、時序差異 、時鐘閘控 、緩衝器尺吋設計 、低耗能 、超大型積體電路 、實體設計 |
外文關鍵詞: | clock tree, clock skew, clock gating, buffer sizing, low power, VLSI, physical design |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
時鐘網路的功率消耗是晶片全部功率消耗的主要來源之ㄧ。為了提升產品的可使用性,低功率的技術變得非常重要,尤其是對於時鐘網路的低功率設計方法。時鐘閘控是降低數位電路動態功率消耗的有效方法。當暫存器內儲存的值不需要改變時,可以藉著關閉時脈訊號的切換來降低切換電容的值。除此之外,利用限制時序差異的時鐘樹可以縮短時脈訊號的線路長度,這也暗示了可以達到更低的功率消耗。在本篇論文,我們將整合時鐘閘控及限制時序差異時鐘樹的方法去建構出一個擁有最小功率消耗的閘控時鐘樹。首先,我們提出一個時鐘樹拓樸生成方法來產生擁有最小輸出負載的時鐘樹拓樸。其次,我們利用限制時序差異時鐘樹的繞線演算法嵌入產生的時鐘樹拓樸。最後,我們使用動態規劃的方式來調整緩衝器的尺寸,以期望更進一步最佳化功率的消耗。實驗結果顯示我們的方法能有效的降低動態功率的消耗。
Power dissipation in clock network distribution is one of the major sources of total power dissipation on a chip. In order to increase utility of the products, low-power techniques become very important, especially for clock network construction. Clock gating is an efficient way of reducing dynamic power consumption in digital circuits. It reduces switched capacitance by turning off transitions on a clock tree when the triggered registers do not need to change their values. Besides, bounded-skew clock tree is proposed to shorten the total wirelength of a clock net, implying lower power dissipation. Our work in this thesis is to construct a minimal power gated clock tree by integrating these two schemes. First, we propose a topology generation method to generate the clock tree topology with minimal output net loading. Second, we apply the bounded-skew clock routing algorithm to embed the generated topology. Finally, we perform buffer sizing by a dynamic programming approach to further optimize the power dissipation. The experimental results show that the algorithm is effective in reducing dynamic power consumption.
[1] J. Oh and M. Pedram, “Gated Clock Routing for Low-Power Microprocessor Design,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 20, No. 6, pp. 715-722, 2001.
[2] T. Kitahara, F. Minami, T. Ueda, K. Usami, S. Nishio, M. Murakata, T. Mitsuhashi, “A Clock-Gating Method for Low-Power LSI Design,” Proc. Asia and South Pacific Design Automation Conf., pp. 307-312, 1998.
[3] H. Bakoglu, J. T.Walker and J. D. Meindl, “A Symmetric Clock-Distributiontree and Optimized High-Speed Interconnections for Reduced Clock Skew in ULSI and WSI Circuits,” Proc. IEEE ICCD., pp. 118-122, 1986.
[4] M. A. B. Jackson, A. Srinivasan and E. S. Kuh, “Clock Routing for High Performance ICs,” Proc. ACM/IEEE Design Automation Conf., pp. 573-579, 1990.
[5] J. G. Xi and W. W.-M. Dai, “Useful-skew Clock Routing with Gate Sizing for Low Power Design,” Proc. ACM/IEEE Design Automation Conf., pp. 383-388, 1996.
[6] C.-W. A. Tsao and C.-K. Koh, “UST/DME: A Clock Tree Router for General Skew Constraints,” Proc. ACM/IEEE International Conference on Computer-Aid Design, pp. 400-405, 2000.
[7] M. Edahiro, “An Efficient Zero-Skew Routing Algorithm,”Proc. ACM/IEEE Design Automation Conf., pp. 375-380, 1994.
[8] T.-H. Chao, Y.-C. Hsu, J. M. Ho, K. D. Boese and A. B. Kahng, “Zero Skew Clock Routing with Minimum Wirelength,” IEEE Trans. on Circuits and Systems, 39(11), pp. 799-814, 1992.
[9] M. Edahiro, “Minimum Path-Length Equi-Distant Routing,” Proc. IEEE Asia-Pacific Conference on Circuits and Systems, pp. 41-46, 1992.
[10] J. Cong and C.-K. Koh, “Minimum-Cost Bounded-Skew Clock Routing,”Proc. IEEE Intl. Symp. on Circuits and Systems, Vol. 1, pp. 215-218, 1995.
[11] J. Cong, A. B. Kahng, C.-K. Koh and C.-W. A. Tsao, “Bounded-Skew Clock and Steiner Routing,”ACM Trans. on Design Automation of Electronics Systems, 3(3), pp. 341-388, 1998.
[12] J. G. Xi and W. W.-M. Dai, “Buffer Insertion and Sizing Under Process Variations for Low Power Clock Distribution,” Proc. ACM/IEEE Design Automation Conf., pp. 383-388, 1995.
[13] A. D. Mehta, Y.-P. Chen, N. Menezes, D.-F. Wong, and L. T. Pileggi, “Clustering and Load Balancing for Buffered Clock Tree Synthesis,” Proc. IEEE ICCD., pp. 217-223, 1997.
[14] R. Kay and L. T. Pillage, “EWA: Efficient Wiring-Sizing Algorithm. for Signal Nets and Clock Nets,” IEEE Trans. Computer-Aided Design, pp. 40-49, 1998.
[15] I.-M. Liu, T.-L. Chou, A. Aziz and D.-F. Wong, “Zero-skew clock tree construction by simultaneous routing, wire sizing and buffer insertion,” Proc. International Symposium on Physical Design, pp. 33-38, 2000.
[16] A. Farrahi, C. Chen, A. Srivastava, G. Tellez, and M. Sarrafzadeh, “Activity-Driven Clock Design,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, Vol. 20, No. 6, pp. 705-714, 2001.
[17] C. Chen, C. Kang, and M. Sarrafzadeh, “Activity-Sensitive Clock Tree Construction for Low Power,” Proc. ACM/IEEE International Symposium on Low-Power Electronics and Design, pp. 279-282, 2002.
[18] W. C. Elmore, “The Transient Response of Damped Linear Network with Particular Regard to Wideband Amplifier,” J. Applied Physics, 19, pp. 55-63, 1948.
[19] M. Edahiro, “A Clustering-Based Optimization Algorithm in Zero-Skew Routing,” Proc. ACM/IEEE Design Automation Conf., pp. 612-616, 1993.