簡易檢索 / 詳目顯示

研究生: 李武哲
論文名稱: 樟腦醯胺為掌性輔助基應用於 (+)-α-Allokainic acid 之不對稱合成研究
Asymmetric Synthesis of (+)-α-Allokainic acid Employing Ketopinic Amide as Chiral Auxiliary
指導教授: 汪炳鈞
口試委員: 李衍彰
王聖凱
汪炳鈞
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 88
中文關鍵詞: 輔助基全合成Kainic aicd
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究希望利用樟腦衍生物 126 作為掌性輔助基,與甘胺酸第三
    丁酯 (128) 縮合形成的樟腦醯基亞胺 109 與 α,β-不飽和酸酯 118 經
    由 1,4-加成反應來建立不對稱中心得到化合物 119;化合物 119 利用
    胺轉換將掌性輔助基水解並進行合環反應,可建構出內醯胺(lactam)
    結構的焦谷胺酯(Pyroglutamate) 120,且進行羥醛反應建構出 4 號碳
    具有立體中心的中間體145,做為紅藻胺酸(+)-α-Allokainic acid (7) 合
    成研究的重要前驅物。


    This study is the application of camphor derivatives ketopinic amide
    126 as a chiral auxiliary in the synthesis of pyrrolidine alkaloids.
    Condensation of ketopinic amide 126 with tert-butyl glycinate (128)
    provided imine 109. Compound 119 could be obtained via asymmetric
    Michael addition of imine 109 with α,β-unsaturated ester 118. Hydrolysis
    of compound 119 to remove the chiral auxiliary followed by cyclization
    to afford lactam 120, and then via aldol reaction can construct the chiral
    center to provide compound 145 which can be an important precursor for
    the synthesis of (+)-α-Allokainic acid (7).

    vi 目錄 摘要 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ i Abstract ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ ii 謝誌 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ iii 縮寫對照表 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ iv 目錄 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ vi 圖目錄 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ viii 表目錄 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ ix 流程目錄 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ x 第一章 緒論 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 1 1.1 紅藻氨酸(Kainic acid)之發現、結構、與生物活性 ․․․․․․ 1 1.2 紅藻氨酸(Kainic acid)之合成研究 ․․․․․․․․․․․․․․․․․ 2 1.3 樟腦為掌性輔助基在不對稱合成上的應用 ․․․․․․․․․․․․ 11 vii 1.4 研究動機 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 20 第二章 結果與討論 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 23 2.1 紅藻胺酸(+)-α-Allokainic acid (7) 的逆合成分析 ․․․․․․․․ 23 2.2 紅藻胺酸(+)-α-Allokainic acid (7) 的合成 ․․․․․․․․․ 24 2.3 結論 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 44 2.4 願景 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 46 第三章 實驗部分 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 45 3.1 一般實驗方法 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 47 3.2 實驗步驟及光譜資料 ․․․․․․․․․․․․․․․․․․․․․․․․․․ 49 第四章 參考文獻 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 65 附錄 氫碳核磁共振光譜以及 NOE 實驗光譜 ․․․․․․․․․․ 70 viii 圖目錄 圖一、紅藻胺酸類衍生物 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 2 圖二、樟腦立體結構對加成反應選擇性的影響 ․․․․․․․․․․․․ 11 圖三、本實驗室解釋 1,4-加成反應時影響立體選擇性的過渡態構型 ․ ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 19 圖四、焦谷胺酯骨架的延伸及應用 ․․․․․․․․․․․․․․․․․․․․․․․․ 21 圖五、樟腦衍生物亞胺 109 為輔助基進行不對稱串聯 1,4-加成-醛醇 反應 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 28 圖六、矽氧基衍生物 138 之 NOE 圖 ․․․․․․․․․․․․․․․․․․․․․ 34 圖七、烯類化合物 145 (epi-145) 之 NOE 圖 ․․․․․․․․․․․․․․․․ 41 ix 表目錄 表一、Viallefont 教授利用亞胺 86 進行不對稱 1,4-加成反應的結果 ․ ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 13 表二、Kanemasa 教授利用亞胺 90 進行不對稱 1,4-加成反應的結果 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 14 表三、樟腦醯基亞胺 109 對 α,β-不飽和酸酯 110a~110e 進行不對稱 1,4-加成反應的結果 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 18 x 流程目錄 流程一、Oppolzer 教授合成(+)-α-Allokainic acid (7) 的反應途徑 ․․ 3 流程二、Ito 教授合成(±)-α-Allokainic acid dimethyl ester (16) 的反應 途徑 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 4 流程三、Benntti 教授合成(+)-α-Allokainic acid (7) 的反應途徑 ․․ 5 流程四、Agami 教授合成(-)-α-Allokainic acid (37) 的反應途徑 ․․ 6 流程五、Rubio 教授合成(-)-α-Kainic acid (50) 的反應途徑 ․․․․․ 7 流程六、Lautens 教授合成(-)-α-Kainic acid (50) 的反應途徑 ․․․ 8 流程七、Jung 教授合成(+)-α-Allokainic acid (7) 的反應途徑 ․․․ 9 流程八、Saicic 教授合成(+)-α-Allokainic acid (7) 的反應途徑 ․․ 10 流程九、Viallefont 教授製備焦谷胺酯 89 的反應途徑 ․․․․․ 13 流程十、 Kanemasa 教授製備焦谷胺酯 93 的反應途徑 ․․․․․․․․ 14 流程十一、Rolland 教授製備焦谷胺酯 98a 與 98b 以及胺基酸 99a 與 99b 的反應途徑 ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 16 流程十二、Xu 教授製備掌性 γ-內醯胺 107 及吡咯 108 的反應途徑 ․ ․ ․ ․ ․ ․ ․ ․ ․ ․ ․ ․ ․ ․ ․ ․ ․ ․ ․ ․ ․ ․ ․ ․ ․ ․ ․ ․ ․ ․ ․ ․ ․ ․ 1 7 流程十三、鍾權忠博士製備掌性焦谷胺酯 112 的反應途徑 ․․․․․․ 20 流程十四、本實驗室對於(+)-α-Allokainic acid (7) 的重要前驅物焦酯 120 的谷胺合成方法 ․․․․․․․․․․․․․․․․․․․․․․․․․․․ 22 流程十五、紅藻胺酸(+)-α-Allokainic acid (7) 的逆合成分析 ․․․․․ 24 流程十六、製備 Ketopinic amide 126 的合成路徑 ․․․․․․․․․․․․ 25 流程十七、製備 α,β-不飽和酸酯 118 的合成路徑 ․․․․․․․․․․․․․ 26 流程十八、吡咯化合物 145 的合成路徑 ․․․․․․․․․․․․․․․․․․․․ 45 流程十九、(+)-α-Allokainic acid (7)預期的後續合成步驟 ․․․․․․․․ 46

    65

    第四章 參考文獻
    [1] Murakami, S.; Takemoto, T.; Shimizu, Z. J. Pharm. Soc. Jpn. 1953,
    73, 1026.
    [2] Nitta, I.; Watase, H.; Tomiie, Y. Nature (London) 1958, 181, 761.
    [3] Cantrell, B. E.; Zimmerman, D. M.; Monn, J. A.; Kamboj, R. K.; Hoo,
    K. H.; Tizzano, J. P.; Pullar, I. A.; Farrell, L. N.; Bleakman, D. J. Med.
    Chem. 1996, 39, 3617.
    [4] (a) Takemoto, T. and Daigo, K. Chem. Pharm. Bull. 1958, 6, 578. (b)
    Daigo, K. J. Pharm. Soc. Jpn. 1959, 79, 350.
    [5] Maeda, M.; Kodama, T.; Tanaka, T.; Yoshizumi, H.; Takemoto, T.;
    Nomoto, K.; Fujita, T. Chem. Pharm. Bull. 1986, 34, 4892.
    [6] Watase, H.; Tomiie, Y.; Nitta, I. Bull. Chem. Soc. Jpn. 1958, 31, 714.
    [7] Johnston, G. A. R.; Curtis, D. R.; Davies, J.; McCulloch, R. M. Nature,
    1974, 248, 804.
    [8] Sperk, G. Prog. Neurobiol. (Oxford) 1994, 42, 1-32.
    [9] Coyle, J. T.; Schwarcz, R. Nature (London) 1976, 263, 244.
    [10] (a) McGeer, E.G.; Olney, J.W.; McGeer, P.L., Eds., Kainic Acid as a
    Tool in Neurobiology, Raven Press, New York, 1978. (b) Simon, R.P.,
    Ed., Excitatory Amino Acids, Thieme Medical Publishers, New York,
    1992. (c) Wheal, H.V.; Thomson, A.M., Eds., Excitatory Amino
    Acids and Synaptic Transmission, Academic Press, London, 1991.
    [11] Oppolzer, W.; Thirring, K. J. Am. Chem. Soc. 1982, 104, 4978.
    66

    [12] (a) Oppolzer, W.; Robbiani, C.; Battig, K. Tetrahedron 1984, 40,
    1391. (b) Baldwin, J. E.; Lee, C.-S. J. Chem. Soc. Chem. Commun.
    1987, 166. (c) Barco, A.; Benetti, S.; Casolari, A.; Pollini, G. P.;
    Spalluto, G. Tetrahedron Lett. 1990, 31, 4917. (d) Barco, A.; Benetti,
    S.; Spalluto, G.; Casolari, A.; Pollini, G. P.; Zanirato, V. J. Org. Chem
    . 1992, 57, 6279. (e) Hatakeyama, S.; Sugawara, K.; Takano, S. J.
    Chem. Soc. Chem. Commun. 1993, 125. (f) Agami, C.; Cases, M.;
    Couty, F. J. Org. Chem. 1994, 59, 7937. (g) Ezquerra, J.; Estibano,
    A.; Rubio, A.; Remuinan, M. J.; Vaquero, J. J. Tetrahedron Lett. 1995,
    36, 6149. (h) Hanessian, S.; Ninkovic, S. J. Org. Chem. 1996, 61, 54
    18. (i) Bachi, M. D.; Melman, A. J. Org. Chem. 1997, 62, 1896.
    (j) Bachi, M. D.; Melman, A. Pure Appl. Chem. 1998, 70, 259.
    (k) Cossy, J.; Cases, M.; Pardo, D. G. Tetrahedron 1999, 55, 6153.
    (l) Campbell, A. D.; Raynham, T. M.; Taylor, R. J. K. J. Chem. Soc.
    Perkin Trans. 1 2000, 3194. (m) Ma, D.; Deng, P. Tetrahedron Lett.
    2001, 42, 6929. (n) Xia, Qian; Ganem, B. Org. Lett. 2001, 3, 485. (o)
    Clayden, J.; Menet, C. J.; Mansfield, D. J. Chem Commun. 2002, 38.
    (p) Trost, B. M.; Rudd, M. T. Org. Lett. 2003, 5, 1467. (q) Cook, G.
    R.; Sun, L. Org. Lett. 2004, 6, 2481. (r) Morita, Y.; Tokuyama, H.;
    Fukuyama, T. Org. Lett. 2005, 7, 4337. (s) Pandey, S. K.; Orellana,
    A.; Greene, A. E.; Poisson, J.-F. Org. Lett. 2006, 8, 5665. (t) Yung,
    Y. C.; Yoon, C. H.; uros, E.; Yoo, K. S.; Yung, K. W. J. Org. Chem.
    2007, 72, 10114. (u) Tomooka, K.; Akiyama, T.; Man, P.; Suzuki, M.
    Tetrahedron Lett. 2008, 49, 6327. (v) Kitamoto, K.; Sampei, M.;
    Nakayama, Y.; ato, T.; Chida, N. Org. Lett. 2010, 12, 5756. (w)
    Lemière, G.; Sedehizadeh, S.; Toueg, J.; Fleary-Roberts, N.; Clayden,
    J. Chem. Commun. 2011, 47, 3745. (x) Arena, G.; Chen, C. C.;
    67

    Leonori, D.; Aggarwal, V. K. Org. Lett. 2013, 15, 4250. (y) Vulovic,
    B.; Pavlovic, M. G.; Matovic, R.; Saicic, R. M. Org. Lett. 2014, 16,
    34.
    [13] Oppolzer, W.; Robbiani, C.; Btittig, K. Tetrahedron 1984, 40,
    1391.
    [14] Murakami, M.; Hasegawa, N.; Hayashi, M.; Ito,Y. J. Org. Chem.
    1991, 56, 7356.
    [15] Barco, A.; Spalluto, G.; Benetti, S. J. Org. Chem. 1992, 57, 6279
    [16] Agami, C.; Cases, M.; Couty, F. J. Org. Chem. 1994, 59, 7937.
    [17] Rubio, A.; Ezquerra, J.; Escribano, A.; Remuiñán, M.J.; Vaquero,
    J.J.; Tetrahedron Lett. 1998, 39, 2171.
    [18] Scott, M. E.; Lautens, E. Org. Lett. 2005, 7, 3045.
    [19] Yoon, C. H.; Turos, E.; Yoo, K. S.; Jung, Y. C.; Jung, K. W. J. Org.
    Chem. 2007, 72, 10114.
    [20] Achqar, A. E.; Boumzebra, M.; Roumestant, M. L.; Viallefont P.
    Tetrahedron 1988, 44, 5319.
    [21] Kanemasa, S. Bull. Chem. Soc. Jpn. 1991, 64, 2739.
    [22] Rolland, J. W.; Roumestant, M. L.; Martinez, J. Tetrahedron:
    Asymmetry 2003, 14, 1123.
    [23] Xu, P.-F.; Huang, Y.; Li, Q.; Liu, T.-L. J. Org. Chem. 2009, 74, 1252.
    [24] 鍾權忠,清華大學博士論文,2010。
    [25] (a) Okamoto, N.; Hara, O.; Makino, K.; Hamada, Y. Tetrahedron:
    68

    Asymmetry 2001, 12, 1353. (b) Zampella, A.; D’Auria, M. V.;
    Paloma, L. G.; Casapullo, A. Minale, L.; Debitus, C.; Henin, Y. J. Am.
    Chem. Soc. 1996, 118, 6202. (c) Calimsiz, S.; Lipton, M. A. J. Org.
    Chem. 2005, 70, 6218.
    [26] (a) Somfia, P.; Ahman, J. Tetrahedron Lett. 1992, 33, 3791. (b)
    Ahman, J.; Somfia, P. Tetrahedron Lett. 1992, 48, 9537. (c)
    Melching, K. H.; Hiemstra, H.; Klaver, W. J.; Speckamp , W. N.
    Tetrahedron Lett. 1986 , 27, 4709.
    [27] (a) Wang, W.; Yang, J.; Ying, J.; Xiong, C.; Zhang, J.; Cai, C.;
    Hruby, V. J. J. Org. Chem. 2002, 67, 6353. (b) Lim, S. H.; Ma, S.;
    Beak, P. J. Org. Chem. 2001, 66, 9056.
    [28] (a) Ezquerra, J.; Pedregal, C.; Collado, I.; Yruretagoyena, B.; Rubio,
    A. Tetrahedron 1995, 51, 10107. (b) Ohta , T.; Hosoi, A.; Nozoe, S.
    Tetrahedron Lett. 1988, 29, 329. (c) Attwood, M. R.; Carr, M. G.;
    Jordan, S. Tetrahedron Lett. 1990, 31, 283.
    [29] Lin, S.; Deiana, L.; Tseggai, A.; Córdova, A. Eur. J. Org. Chem.
    2011, 398
    [30] 許筑婷,清華大學博士論文,2010。
    [31] Ezquerra, J.; Pedregal, C.; Yruretagoyena, B.; Rubio, A. J. Org.
    Chem. 1995, 60, 2925.
    [32] Tchabanenko, K.; Clayden, J. Chem. Commun. 2000, 317.
    [33] 詹德品,清華大學博士論文,2004。

    69

    [34] Iwabuchi, Y.; Ogasawara, K.; Takano, S. J. Chem. Soc. Chem.
    Commun. 1988, 1204.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE