研究生: |
吳嘉洲 Chia-Chou Wu |
---|---|
論文名稱: |
果蠅標準腦之建立及其在三維神經網路影像資料庫之應用 Generation of Standard Drosophila Brain for Archiving Neural circuitry in 3D Image Database |
指導教授: |
江安世
Ann-Shyn Chiang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 30 |
中文關鍵詞: | 果蠅 、標準化 、神經網路 |
外文關鍵詞: | Drosophila, Standardization, Neural circuitry |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來利用基因調控的方法在動物行為上的研究雖有初步的成果,但是其根本的機制尚待進一步的探討。在研究基因調控神經網路進而影響到行為的領域中,有兩大方向:其一為硬體部分,也就是神經網路的結構;另一為軟體部分,也就是神經網路所傳遞的訊息及這些訊息的調控。在本篇論文中,我們著重在硬體部分並試著建立一個影像整合平台,希望能夠完成腦袋神經網路的建構。由於果蠅在行為學研究上的廣泛應用和有大量的基因工具可以使用,因此我們選擇果蠅這種模式生物來當作平台建立的基礎。我們採用兩種方法來建立果蠅的標準腦:其一為利用果蠅腦袋的機率分佈圖來決定平均腦袋的外型;其二為利用三維空間的距離分佈圖來決定平均腦袋的外型,另外也試圖比較這兩種方法的優劣。除了完成腦形的平均模型,蕈狀體平均模型也被合理的放在平均腦中,同時一個立體座標系統也被放入標準模型裡。以蕈狀體做為一個地標,我們可以將一個個神經細胞放入所完成的標準腦中。在本文中我們也展示該平台能夠將來自不同實驗的資料進行整合,像是在共軛焦顯微鏡下基因表現綠色螢光蛋白的資料或是利用不同基因工具所產生的單細胞影像資料…等等。除了整合的功能外,我們也開發了許多搜尋及分析資料的工具,希望能給予科學家在研究腦部功能時一點靈感。
The study of behavior in terms of genes has been appreciated but the underlying mechanism has not been fully explained. Currently there are two major targets for researches in the field: the first is aimed at the hardware, the structure of the circuitry; the second is to study the information flow and its modification. Here, we focus on the “hardware” part, and try to propose a platform for building a complete circuitry. Since Drosophila melanogaster is recognized as a model system for studying the mechanism underlying the behavior, we choose this model organism as our framework to build the platform. Two methods were adopted to reconstruct an average model: the first one, the average shape is determined from the intensity map of the samples. In the second one, the average shape is determined from a 3D distance map of brain surfaces. The efficacy of these two methods is discussed. In addition to the average shape of whole brain, the average mushroom body is constructed and located within the average brain. A global coordination in the average brain is also assigned. Single neurons with their associated mushroom body, as the landmark are transformed into the standard brain accordingly. We demonstrated that the platform can be used to archive spatial patterns of gene expressions and single neurons and other types’ images of protein in Drosophila brain and many searching and analysis tools we have developed would give scientists an insight about how the brain works.
1. Axel, R. (2005). Scents and sensibility: a molecular logic of olfactory perception (Nobel lecture). Angew Chem Int Ed Engl 44, 6110-6127.
2. Chen, Y.C., Chen, Y.C., and Chiang, A.S. (2002). Two-level model averaging techniques in Drosophila brain imaging. Paper presented at: Image Processing 2002 Proceedings 2002 International Conference on.
3. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., and Sporns, O. (2008). Mapping the Structural Core of Human Cerebral Cortex. PLoS Biol 6, e159.
4. Hell, S., Reiner, G., Creamer, C., and Stelzer, E. H. K. (1993). Aberrations in Confocal Fluorescence Microscopy Induced by Mismatches in Refractive Index. Journal of Microscopy 169.
5. Hofbauer, A. (2000). Eine Bibiliothek monoklonaler Antikoぴ rper gegen das Gehirn von Drosophila melanogaster. Habilitation thesis, Wuぴ rzburg University, Wuぴ rzburg, Germany.
6. Lahey, T., Gorczyca, M., Jia, X.X., and Budnik, V. (1994). The Drosophila tumor suppressor gene dlg is required for normal synaptic bouton structure. Neuron 13, 823-835.
7. Laissue, P.P., Reiter, C., Hiesinger, P.R., Halter, S., Fischbach, K.F., and Stocker, R.F. (1999). Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster. J Comp Neurol 405, 543-552.
8. Lee, T., and Luo, L. (1999). Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451-461.
9. Lin, H.H., Lai, J.S., Chin, A.L., Chen, Y.C., and Chiang, A.S. (2007). A map of olfactory representation in the Drosophila mushroom body. Cell 128, 1205-1217.
10. Liu, Y.C., and Chiang, A.S. (2003). High-resolution confocal imaging and three-dimensional rendering. Methods 30, 86-93.
11. Margulies, C., Tully, T., and Dubnau, J. (2005). Deconstructing memory in Drosophila. Curr Biol 15, R700-713.
12. McGuire, S.E., Deshazer, M., and Davis, R.L. (2005). Thirty years of olfactory learning and memory research in Drosophila melanogaster. Prog Neurobiol 76, 328-347.
13. Parnas, D., Haghighi, A.P., Fetter, R.D., Kim, S.W., and Goodman, C.S. (2001). Regulation of postsynaptic structure and protein localization by the Rho-type guanine nucleotide exchange factor dPix. Neuron 32, 415-424.
14. Rein, K., Zockler, M., and Heisenberg, M. (1999). A quantitative three-dimensional model of the Drosophila optic lobes. Curr Biol 9, 93-96.
15. Rein, K., Zockler, M., Mader, M.T., Grubel, C., and Heisenberg, M. (2002). The Drosophila standard brain. Curr Biol 12, 227-231.
16. Ryder, E., and Russell, S. (2003). Transposable elements as tools for genomics and genetics in Drosophila. Brief Funct Genomic Proteomic 2, 57-71.
17. Shang, Y., Claridge-Chang, A., Sjulson, L., Pypaert, M., and Miesenbock, G. (2007). Excitatory local circuits and their implications for olfactory processing in the fly antennal lobe. Cell 128, 601-612.
18. Stocker, R.F., Lienhard, M.C., Borst, A., and Fischbach, K.F. (1990). Neuronal architecture of the antennal lobe in Drosophila melanogaster. Cell Tissue Res 262, 9-34.
19. Tully, T., and Quinn, W.G. (1985). Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol [A] 157, 263-277.
20. Vosshall, L.B. (2007). Into the mind of a fly. Nature 450, 193-197.
21. Wilson, R.I., Turner, G.C., and Laurent, G. (2004). Transformation of olfactory representations in the Drosophila antennal lobe. Science 303, 366-370.