簡易檢索 / 詳目顯示

研究生: 翁培紳
Pei-shen Weng
論文名稱: 旋轉圓盤內流場的平行大渦數值模擬
Parallel large eddy simulation of rotor-stator cavity flow
指導教授: 林昭安
Chao-an Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 57
中文關鍵詞: 平行大渦數值模擬封閉式旋轉圓盤完全發展無限平板管流加速叢集式電腦平行式電腦
外文關鍵詞: Parallel, Large eddy simulation, Rotor-stator cavity flow, fully developed channel flow, speed-up, PC clusters, IBM SMP
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此次的研究中,利用大渦數值模擬 (LES) 和Van Driest阻尼函式 (damping function) 來預測受限壁面的無限平板管流和旋轉圓盤內的流場。數值程序是基於有限體積和交錯型網格,空間上和時間上的方法分別是用二階精確度的中央差分和ADI。
    本次研究主要的工作之一是去平行大渦數值模擬的程式。所採用的環境是單一程式和多個資料 (SPMD) 的型態,所用到的平行機器為16個節點 (node) 的IBM SP2、16個節點的IBM SMP和32個節點的叢集式電腦 (PC clusters)。結果可發現在程式陣列較大時,其加速表現 (speed-up) 有線性甚至超線性的現象發生,尤其在IBM SMP的機器上,但是叢集式電腦的加速爬升能力則較IBM的機器差。然而,叢集式電腦對於科學計算上的確提供了一經濟有效能的方法。

    另外,完全發展的無限平板管流(其以剪應力速度uτ為準的雷諾應力Reτ等於180)和旋轉圓盤內的流場(其最大旋轉雷諾應力Reθ為 )皆被用來檢測此次所採用的大渦數值方法,所比較的數據為直接數值模擬 (DNS) 的計算結果和一些可以獲得的量測結果。


    In the present study, large eddy simulations with Van Driest damping function is used to predict wall bounded channel flows and rotor-stator cavity flows. The numerical procedure is based on the finite volume approach with staggered grid arrangement. The spatial and temporal schemes adopted are center differencing and ADI, which are second order accurate.
    One of the major efforts of the present research is to parallelize the LES programs. In the present parallel implementation, the single program multiple data (SPMD) environment is adopted. The target machines are a 16-node IBM SP2 (power 2), a 16-node IBM SMP (power 3) and a 32-node PC clusters. Linear or even super linear results are obtained for the large problem size using IBM SP2 and SMP machines. The scalability of the PC cluster is not compatible with the IBM machines. However, the PC clusters does provide a cost effective way of scientific computations.

    The fully developed channel flows with Reynolds number of and the rotor-stator cavity flows are adopted to examine the capability of the LES scheme. The results are examined by comparing the predicted flow quantities with DNS data and available measurements.

    Abstract ………………………………………………………………...…………….. i Acknowledgment ……………………………………………………………….…… ii Nomenclature ……………………………………………………………………..… iii List of Tables …..…………………………………………………………………..... vi List of Figures ………………………………………………………………….….... vi Chapter 1 Introduction 1 1.1 Introduction ……………………………………………………………..….……. 1 1.1.1 Turbulent flows scales …………………………………………………….…… 2 1.1.2 Turbulence models ……………………………………………………….……. 3 1.1.3 Remedy methods ………………………………………………………..…….. 5 1.2 Literature survey …………………………………………………………….…... 5 1.3 Objectives ………...……………………………………………………………... 8 Chapter 2 Mathematical Model 10 2.1 Governing equations ………………………………………………………….... 10 2.1.1 The filtering operation …………………………………………………….…. 10 2.1.2 Filtered Navier-Stokes equations …………………………………………….. 11 2.2 Sub-grid scale modeling ………………………………………………………... 12 2.2.1 Smagorinsky model …………………………………………………………... 13 2.2.2 Other related models …………………………………………….…………… 14 Chapter 3 Numerical Algorithm 15 3.1 Discretisation of the transport equation ………………………………….…….. 15 3.1.1 Spatial discretisation ……………………………………………………...….. 16 3.1.2 Temporal discretisation ……………………………………………….……… 18 3.2 Pressure correction ……………………………………………………………... 19 3.2.1 Sequence of operations ……………………………………………………….. 21 Chapter 4 Parallel Algorithm 23 4.1 Domain decomposition …………………………..…………………………….. 24 4.2 Basic functions and the parallel region construct ……………………..……….. 25 Chapter 5 Results and Discussion 27 5.1 Parallel efficiency ………..………………………..…………………...……….. 27 5.2 Fully developed channel flow ….………………..…………………….……….. 29 5.3 Rotor-stator cavity flow ….………………………..……………………...…….. 30 Chapter 6 Conclusion and Future Works 32 6.1 Conclusion ………….…..………………………..…………………….……….. 32 6.2 Future works …..………..………………………..…………………….……….. 33 Bibliography …..…………………………………………………………………… 35 Tables ……………………………………………………………………………….. 38 Figures ……………………………………………………………………….……... 39 Appendix …...………………………………………………………………………. 55

    [1] Brian, P. L. T., 1961, “A finite difference method of high-order accuracy for the solution of three-dimensional transient heat conduction problem,” A. I. Ch. E. Journal, Vol. 7, No. 3, pp. 367-370.
    [2] Cabot, W. and Moin, P., 1999, “Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow,” Flow, Turbulence and Combustion, Vol. 63, pp. 269-291.
    [3] Craft, T. J., Gerasimov, A. V., Iacovides, H. and Launder, B. E., 2001, “Progress in the generalization of wall-function treatments,” The 3rd Engineering Foundation Heat Transfer Conference, Alaska.
    [4] Craft, T. J., Gerasimov, A. V., Iacovides, H., Launder, B. E. and Robinson, C., 2001, “A new wall function strategy for forced and mixed convection,” 2nd International Symposium on Turbulent Shear Flow Phenomena, Stockholm, Sweden.
    [5] Craft, T. J., Gant, S. E., Iacovides, H. and Launder, B. E., 2001, “Development and application of a new wall function for complex turbulent flows,” ECCOMAS Computational Fluid Dynamics Conference.
    [6] Daily, J. W., Ernst, W. D. and Asbedian, V. V., 1964, “Enclosed rotating disks with superposed throughflows: mean steady and periodic unsteady characteristics of included flow,” Report No.64, Hydrodynamic Lab. Massachusetts Institute of Technology.
    [7] Deardorff, J. W., “A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers,” Journal of Fluid Mechanics, Vol. 41, pp. 453-480.
    [8] Ferziger, J. H., Peric', M., 1996, “Computational methods for fluid dynamics,” Springer.
    [9] Germano, M., Piomelli, U., Moin, P. and Cabot, W. H., 1991, “A dynamic subgrid-scale eddy viscosity model,” Physics of Fluids A, Vol. 3, No. 7, pp. 1760-1765.
    [10] Ghosal, S., Lund, T. S., Moin, P., and Akselvoll, K., 1995, “A dynamic localization model for large-eddy simulation of turbulent flows,” Journal of Fluid Mechanics, pp. 229-255.
    [11] Kim, J. and Moin, P., 1985, “Application of a fractional-step method to incompressible Navier-Stokes equations,” Journal of Computational Physics, Vol. 59, pp. 308-323.
    [12] Kim, J., Moin, P., and Moser, R. D., 1987, “Turbulent statistics in fully developed channel flow at low Reynolds number,” Journal of Fluid Mechanics, Vol. 177, pp. 133.
    [13] Lilly, D. K., 1992, “A Proposed modification of the Germano subgrid-scale closure method,” Physics of Fluids A, Vol. 4, No. 3, pp. 633-635.
    [14] Moser, R. D., Kim, J., and Mansour, N. N., 1999, “Direct numerical simulation of turbulent channel flow up to ,” Physics of Fluids, Vol. 11, No. 4, pp. 943-945.
    [15] Pacheco, P. S., 1997, “Parallel programming with MPI,” Morgan Kaufmann Publishers.
    [16] Partankar, S. V., 1980, “Numerical heat transfer and fluid flow,” Hemisphere Publishing Corporation.
    [17] Piomelli, U., Ferziger, J., and Moin, P., 1989, “New approximate boundary conditions for large eddy simulations of wall-bounded flows,” Physics of Fluids A, Vol. 1, No. 6, pp. 1061-1068.
    [18] Piomelli, U., Moin, P. and Ferziger, J. H., 1988, “Model consistency in large eddy simulation of turbulent channel flows,” Physics of Fluids, Vol. 31, pp. 1884.
    [19] Piomelli, U., 1994, “Large eddy simulation of turbulent flows,” TAM Report No. 767, University of Illinois at Urbana-Champaign.
    [20] Piomelli, U. and Liu, J., 1995, “Large-eddy simulation of rotating channel flows using a localized dynamic model,” Physics of Fluids, Vol. 7, No. 4, pp. 839-848.
    [21] Shyy, W. and Ebert, M. P., 2001, “Heat transfer and fluid flow in rotating sealed cavities,” Advanced in Heat Transfer, Vol. 35, pp. 173-248.
    [22] Smagorinsky, J., 1963, “General circulation experiments with the primitive equations,” Monthly Weather Review, Vol. 91, pp. 99-164.
    [23] Stokes, G. G., 1851, “On the effect of the internal friction of fluids on the motion of pendulums,” Transaction of Cambridge Philosophy Society, Vol. 9.
    [24] Van Driest, E. R., 1956, “On turbulent flow near a wall,” Journal of Aerospace Science, Vol. 23, pp. 1007-1012.
    [25] Weng, M., 2000, “Dynamics wall modeling for LES of complex turbulent flows,” In: Annual Research Briefs, Center for Turbulence Research, Stanford, CA, pp. 241-250.
    [26] Xu, H. and Pollard, A., 2001, “Large eddy simulation of turbulent flow in a square annular duct,” Physics of Fluids, Vol. 13, No. 11, pp. 3321-3337.
    [27] Zang, Y., Street, R. L., and Koseff, J. R., 1993, “A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows,” Physics of Fluids A, Vol. 5, No. 12, pp. 3186-3196.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE