簡易檢索 / 詳目顯示

研究生: 蔡尚儒
Tsai, Shan-Ju
論文名稱: 應用於影像感測器具線性度校正功能之行平行十位元漸進式類比數位轉換器
A Column-Parallel 10-bit SAR ADC with Linearity Calibration for CMOS Image Sensor
指導教授: 謝志成
Hsieh, Chih-Cheng
口試委員: 邱進峰
洪浩喬
黃柏鈞
謝志成
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 115
中文關鍵詞: 行平行處理類比數位轉換器漸進式類比數位轉換器線性度校正
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一適用於CMOS影像感測器中行平行處理(Column-Parallel)之類比數位轉換器(Analog-to-Digital Converter, ADC),並具有線性度校正功能。為降低單一類比數位轉換器之功耗,本論文採用漸近式類比數位轉換器(Successive Approximation ADC)的架構,並利用功耗較低的電容式數位類比轉換器(Capacitive Digital-to-Analog Converter)來產生類比數位轉換過程中所需的參考電位。
    由於傳統電容式數位類比轉換器是造成漸進式類比數位轉換器面積過大的主要原因,在行平行處理的應用中由於要將之實現在行寬(Column Pitch)中,因此,本論文提出一多分段電容式數位類比轉換器(Multi-Segmented Capacitive DAC)以降低數位類比轉換器所占的面積,並提出一新的校正方式來修正因數位類比轉換器縮小所衍生出的線性度問題。本論文所提出自適應性重設組態(Adaptive Reset Configuration, ARC)的操作方式是將數位類比轉換器在重設時,使數位開關依產生的參考電位不同而調整至不同的開關組態,藉以消除數位類比轉換曲線上的非線性行為。
    為驗證本電路,本論文利用0.18微米混合式訊號CMOS製程來實現一原型實驗晶片。經量測驗証後,差動非線性誤差由 +8.56 / -0.43 LSB 提升至 +1.67 / -1 LSB,積分非線性誤差由 +6.39 / -6.77 LSB 提升至 +3.31 / -4.36 LSB。本晶片在1.8V的電源供應下,消耗19.7微安培的電流,即35.46微瓦的功率。由於論文中晶片驗証結果不符預期,因此本論文中也探討了造成這些現象的原因,並提出解決的方式,以做為未來研究此類比數位轉換器時的基礎與參考。


    This thesis presents a column-parallel analog-to-digital converter (ADC) with linearity calibration for CMOS image sensor. The architecture of the ADC is successive approximation ADC (SA ADC), which is a suitable architecture for low power consumption applications. A multi-segmented capacitive digital-to-analog converter is utilized to reduce both area and the power consumption of the DAC. A new calibration methodology is proposed to eliminate the linearity problem resulting from the segmented DAC.
    Adaptive reset configuration (ARC) calibration methodology is proposed in this thesis. ARC eliminates the non-linear part of the transfer curve by setting different switch configuration during the reset cycle of the DAC according to different reference voltage acquired from the conversion.
    A prototype experimental chip is fabricated by 0.18um mixed signal CMOS process. According to the measurement result, the differential non-linearity is reduced from +8.56 / -0.43 LSB to +1.67 / -1 LSB, and the integrated non-linearity is improved from +6.39 / -6.77 LSB to +3.31 / -4.36. The prototype ADC consumes 19.7uA, 35.46uW at 1.8V voltage supply. Some unexpected non-linearity was found, and the solutions are also discussed in this thesis.

    摘要 I Abstract II 誌謝 III Contents IV List of Figures VI List of Tables X Chapter 1 Introduction 1 1.1 Motivation 1 1.2 ADC Architecture for CMOS Image Sensors 2 1.3 Thesis Organization 4 Chapter 2 Column-Parallel ADC Overview 5 2.1 Single Slope ADC 5 2.1.1 Single Slope ADC [2] 5 2.1.2 Multi-Ramp Single-Slope ADC [3][4] 7 2.2 Cyclic ADC [5]-[7] 9 2.3 Successive Approximation ADC [8][9] 10 2.4 Delta-Sigma ADC [10][11] 11 2.5 Summary 13 Chapter 3 Successive Approximation Column-Parallel ADC 14 3.1 Sample-and-Hold Stage 15 3.1.1 Non-Ideal Effects of Sampling Switch [12] 16 3.1.2 Modified Sample-and-Hold Circuit 18 3.1.3 Design Consideration 21 3.2 Comparator 22 3.2.1 Topologies of Latched Comparator 23 3.2.2 Design Consideration 27 3.3 Successive Approximation Register 28 3.4 Digital-to-Analog Converter 30 3.4.1 Topologies of Capacitive DAC 30 3.4.2 Design Consideration 41 3.5 Simulation Results 47 3.6 Summary 50 Chapter 4 Linearity Calibration with Adaptive Reset Configuration DAC 51 4.1 Calibration with Adaptive Reset Configuration DAC 51 4.2 Operation Procedure Design 54 4.2.1 Pre-Conversion Operations 54 4.2.2 Data Conversion with Linearity Calibration 59 4.3 Characterization of the ARC Calibration and Related DAC Design Consideration 62 4.3.1 Characterization 62 4.3.2 Related DAC Design Consideration 64 4.4 Control System Design 67 4.4.1 Control of Locking Phase 68 4.4.2 Control of Quantizing Phase 69 4.4.3 Control of Data Conversion 70 4.5 Ramp Generator for Locking Phase 76 4.6 Simulation Results 77 4.7 Summary 80 Chapter 5 Chip Implementation and Measurement Result 81 5.1 Chip Implementation 81 5.2 Simulation Results 83 5.3 Measurement Results 88 5.3.1 Measurement Environment 88 5.3.2 Measurement Results 89 5.3.3 Discussion 97 5.4 Summary 103 Chapter 6 Conclusion and Future Work 105 6.1 Conclusion 105 6.2 Future Work 106

    [1] R. Hornsey, “Design and Fabrication of Integrated Image Sensors,” University of Waterloo
    [2] N. Cho, B. Song, K. Kim, and J. Burm, S.W. Han, “A VGA CMOS Image Sensor with 11-bit Column Parallel Single-Slope ADCs,” IEEE International SoC Design Conference, 2010, pp. 25-27.
    [3] M. F. Snoeij, A. J. P. Theuwissen, K. A. A. Makinwa, and J. H. Huijsing, “Multiple-Ramp Column-Parallel ADC Architectures for CMOS Image Sensors,” IEEE Journal of Solid State Circuits, vol. 42, no. 12, pp. 2968-2977, Dec. 2007.
    [4] S. Lim, J. Lee, D. Kim, and G. Han, “A High-Speed CMOS Image Sensor With Column-Parallel Two-Step Single-Slope ADCs,” IEEE Transactions on Electron Devices, Vol. 56, no.3, pp. 393-398, Mar. 2009.
    [5] M. Furuta, Y. Nishikawa, T. Inoue, and S. Kawahito, “A High-Speed, High-Sensitivity Digital CMOS Image Sensor With a Global Shutter and 12-bit Column-Parallel Cyclic A/D Converters,” IEEE Journal of Solid State Circuits, Vol. 42, no. 4, pp. 766-774, Apr. 2007.

    [6] M.W. Seo, S. Suh, T. Iida, H. Watanabe, T. Takasawa, T. Akahori, K. Isobe, T. Watanabe, S. Itoh, S. Kawahito, “An 80μVrms-Temporal-Noise 82dB-Dynamic-Range CMOS Image Sensor with a 13-to-19b Variable-Resolution Column-Parallel Folding-Integration / Cyclic ADC,” IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 400-402, 2011.
    [7] S. Lim, J. Cheon, Y. Chae, W. Jung, D. H. Lee, M. Kwon, K. Yoo, S. Ham, G. Han, “A 240-frames/s 2.1-Mpixel CMOS Image Sensor With Column-Shared Cyclic ADCs,” IEEE Journal of Solid-State Circuits, Vol.46, no.9, pp. 2073-2083 Sep. 2011.
    [8] S. Matsuo, T. J. Bales, M. Shoda, S. Osawa, K. Kawamura, A. Andersson, M. Haque, H. Honda, B. Almond, Y. Mo, J. Gleason, T. Chow, and I. Takayanagi, “8.9-Megapixel Video Image Sensor With 14-b Column-Parallel SA-ADC,” IEEE Transactions on Electron Devices, Vol. 56, no. 11, pp. 2380-2389, Nov. 2009.
    [9] Z. Yang, J. Van der Spiegel, “A 10-bit 8.3MS/s Switched-current Successive Approximation ADC for Column-parallel Imagers,” IEEE International Symposium on Circuits and Systems, pp. 224-227, 2008.
    [10] Y. Chae, J. Cheon, S. Lim, M. Kwon, K. Yoo, W. Jung, D. H. Lee, S. Ham, G. Han, “A 2.1 M Pixels, 120 Frame/s CMOS Image Sensor With Column-Parallel Δ∑ ADC Architecture,” IEEE Journal of Solid-State Circuits, Vol.46, no.1, pp. 236-247, Jan. 2011.
    [11] Y. Chae, G. Han, “Low Voltage, Low Power, Inverter-Based Switched-Capacitor Delta-Sigma Modulator,” IEEE Journal of Solid-State Circuits, Vol.44, no.2, pp. 458-472, Feb. 2009.
    [12] B. Razavi, “Design of Analog CMOS Integrated Circuits,” New York: McGraw-Hill, 2001.
    [13] A. M. Abo, P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS Pipeline Analog-to-Digital Converter,” IEEE Journal of Solid-State Circuits, Vol.34, no. 5, pp. 599-606, May 1999.
    [14] P. M. Figueiredo, J. C. Vital, “Kickback Noise Reduction Techniques for CMOS Latched Comparators,” IEEE Transactions on Circuits and Systems II: Express Briefs, Vol.53, no.7, pp. 514-545, July 2006.
    [15] H. L. Fiedler, B. Hoefflinger, W. Demmer, P. Draheim, “A 5-bit Building Block for 20 MHz A/D Converters,” IEEE Journal of Solid-State Circuits, Vol.16, no.3, pp. 151-155, Jun. 1981.
    [16] S. Sutarja, P. R. Gray, “A Pipelined 13-bit, 250-ks/s, 5-V Analog- to- Digital Converter,” IEEE Journal of Solid-State Circuits, Vol.23, no.6, pp.1316-1323, Dec. 1988.
    [17] T. Kobayashi, K. Nogami, T. Shirotori, Y. Fujimoto, “A Current-Controlled Latch Sense Amplifier and a Static Power- Saving Input Buffer for Low-Power Architecture,” IEEE Journal of Solid-State Circuits, Vol.28, no.4, pp.523-527, Apr. 1993.
    [18] A. Rossi, G. Fucili, “Non-Redundant Successive Approximation Register for A/D Converters,” Electronics Letters, Vol.32, no.12, pp.1055-1057, Jun. 1996.
    [19] S. M. Chin, “A Rail-to-Rail Comparator with Adaptive Power Control for Low Power SAR ADCs in Biomedical Applications,” NTHU, 2010.
    [20] N. Verma, A. P. Chandrakasan, “An Ultra Low Energy 12-bit Rate-Resolution Scalable SAR ADC for Wireless Sensor Nodes,” IEEE Journal of Solid-State Circuits, Vol.42, no.6, pp.1196-1205, Jun. 2007.
    [21] J. Craninckx, G. Van der Plas, “A 65fJ/Conversion-Step 0-to-50MS/s 0-to-0.7mW 9b Charge-Sharing SAR ADC in 90nm Digital CMOS,” IEEE International Solid-State Circuits Conference Dig. Tech. Papers, pp.246-600, 2007.
    [22] W. Y. Pang, C. S. Wang, Y. K. Chang, N. K. Chou, C. K. Wang, “A 10-bit 500-KS/s Low Power SAR ADC with Splitting Comparator for Bio-Medical Applications,” IEEE Asian Solid-State Circuits Conference, pp.149-152, 2009.
    [23] C. C. Liu, S. J. Chang, G. Y. Huang, Y. Z. Lin, “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE Journal of Solid-State Circuits, Vol.45, no.4, pp.731-740, Apr. 2010.
    [24] T. Jiang, W. Liu, F. Y. Zhong, C. Zhong, P.Y. Chiang, “Single-Channel, 1.25-GS/s, 6-bit, Loop-Unrolled Asynchronous SAR-ADC in 40nm-CMOS, ” IEEE Custom Integrated Circuits Conference, pp.1-4, 2010.
    [25] Y. S. Yee, “Two-Stage Weighted Capacitor Circuit for Analog-to-Digital And Digital-to-Analog Converters,” U.S. Patent 4 007 035, Feb. 28, 1978.
    [26] Y. S. Yee, L. M. Terman, L. G. Heller, “A Two-Stage Weighted Capacitor Network for D/A-A/D Conversion,” IEEE Journal of Solid-State Circuits, Vol.14, no.4, pp.778-781, Aug. 1979.
    [27] Y. Chen, X. Zhu, H. Tamura, M. Kibune, Y. Tomita, T. Hamada, M. Yoshioka, K. Ishikawa, T. Takayama, J. Ogawa, S. Tsukamoto, T. Kuroda, “Split Capacitor DAC Mismatch Calibration in Successive Approximation ADC,” IEEE Custom Integrated Circuits Conference, pp.279-282, 2009.
    [28] Y. Zhu, C. H. Chan, U. F. Chio, S. W. Sin, S. P. U, R. P. Martins, “A Voltage Feedback Charge Compensation Technique for Split DAC Architecture in SAR ADCs,” IEEE International Symposium on Circuits and Systems, pp.4061-4064, 2010.
    [29] J. H. Cheong, K. L. Chan, P. B. Khannur, K. T. Tiew, M. Je, “A 400-nW 19.5-fJ/Conversion-Step 8-ENOB 80-kS/s SAR ADC in 0.18um CMOS,” IEEE Transactions on Circuits and Systems II: Express Briefs, Vol.58, no.7, pp.407-411, Jul. 2011.
    [30] E. Alpman, H. Lakdawala, L. R. Carley, K. Soumyanath, “A 1.1V 50mW 2.5GS/s 7b Time-Interleaved C-2C SAR ADC in 45nm LP digital CMOS,” IEEE International Solid-State Circuits Conference Dig. Tech. Papers, pp.76-77(a), 2009.

    [31] Y. M. Liao, T. C. Lee, “A 6-b 1.3Gs/s A/D Converter with C-2C Switch-Capacitor Technique,” International Symposium on VLSI Design, Automation and Test, pp.1-4, 2006.
    [32] H. Kim, Y. J. Min, Y. Kim, S. Kim, “A Low Power Consumption 10-bit Rail-to-Rail SAR ADC Using a C-2C Capacitor Array,” IEEE International Conference on Electron Devices and Solid-State Circuits, pp.1-4, 2008.
    [33] Shuo-Wei Michael Chen, Robert W. Brodersen, “A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13um CMOS,” IEEE Journal of Solid-State Circuits, Vol.41, no.12, pp. 2669-2680, Dec. 2006.
    [34] Yanfei Chen, Xiaolei Zhu, Hirotaka Tamura, Masaya Kibune, Yasumoto Tomita, Takayuki Hamada, Masato Yoshioka, Kiyoshi Ishikawa, Takeshi Takayama, Junji Ogawa, Sanroku Tsukamoto and Tadahiro Kuroda, “Split Capacitor DAC Mismatch Calibration in Successive Approximation ADC,” IEEE Custom Integrated Circuits Conference, pp. 279-282, 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE