研究生: |
林映辰 Lin, Ying-Chen |
---|---|
論文名稱: |
粒線體Lon蛋白在腫瘤與樹突細胞中誘導IL-10上升的機制探討 The mechanisms of IL-10 upregulation by mitochondrial Lon in tumor and dendritic cells |
指導教授: |
李岳倫
Lee, Alan Yueh-Luen 林愷悌 Lin, Kai-Ti |
口試委員: |
朱清良
Chu, Ching-Liang 詹鴻霖 Chan, Hong-Lin |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 77 |
中文關鍵詞: | 介白素10 、Lon 蛋白酶 、樹突細胞 、慢性發炎 、腫瘤微環境 |
外文關鍵詞: | IL-10, Lon, Dendritic cells, Chronic inflammation, Tumor microenvironment |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Lon蛋白酶(Lon)是線粒體基質中一種主要的蛋白酶,其上調與腫瘤微環境中、活性氧化物質(ROS)的增加有關。Lon的上調會使周圍環境變成慢性發炎症環境,這種環境不僅適合腫瘤生長,而且對免疫細胞也有抑制作用。介白素10 (IL-10) 是一種細胞因子,主要透過抗發炎作用來調節先天性和後天性免疫反應,IL-10 即是免疫抑制的指標。在本論文,我們發現腫瘤細胞能透過Lon來調節IL-10分泌的能力,以建立免疫抑制的腫瘤微環境。在我們之前的結果,地塞米松 (dexamethasone) 可誘導調節型樹突細胞 (DC) 中Il10 和Lon基因表現。在本論文研究中,我們的實驗結果顯示,當Lon在癌細胞中過量表現時,癌細胞中il10的表現量水平會增加。我們還觀察到Lon透過 ROS 所調控的 STAT3以及P38 MAPK 細胞訊號途徑調節il10表達。除此之外,我們也發現癌細胞Lon上調時,會促使癌細胞增加介白素6 (IL-6) 表現,然後增強誘導il10的表現。因此,Lon可以透過不同方式調節il10的表現分泌。進一步發現,在體外細胞模式模擬Lon過表現的腫瘤微環境條件下,癌細胞的Lon高表現狀態會調節DC並使其表抗發炎的特性。綜合上述,本論文的結果發現Lon參與了腫瘤免疫抑制微環境的塑造,並誘導DC使其表現出免疫抑制的表型。
Lon protease (Lon) is a major protease in mitochondria whose upregulation links to an increase of reactive oxidative species (ROS) in the tumor microenvironment (TME). Upregulation of mitochondrial Lon will change peripheral surroundings into an environment of chronic inflammation, this environment is not only suitable for tumor growth but also suppressive for immune cells. Interleukin-10 (IL-10) is a cytokine modulates both innate and adaptive immunity, primarily by exerting anti-inflammatory effects, we can say IL-10 is a hallmark of immunosuppression. In this case, we proposed Lon has ability to regulate IL-10 secretion in the cancer cells due to their target to establish an immunosuppressive environment. Following, in our recent results, there is a correlated expression between Il10 and Lon in Dexamethasone-induced regulatory type dendritic cells (DCs). In this study, we show that il10 expression level is upregulated in cancer cell lines when overexpressed with Lon. Beyond, we also observed Lon regulates il10 expression via ROS-dependent STAT3-P38 MAPK pathway. Furthermore, cancer cells enhance their ability producing IL-10 after treating with rIL-6, which is a factor that would be increased upon Lon-upregulation. Hence, it is supported that Lon could positively regulate the secretion of IL-10. We further found DCs showed elevated Lon expression accompanied with anti-inflammatory phenotypes under Lon-overexpressed condition. Taken together, this study showed another role of Lon in participating in shape up of anti-inflammatory condition that may be suitable for tumor growth meanwhile suppressive for anti-tumor immunity.
1. Greaves, M. and C.C. Maley, Clonal evolution in cancer. Nature, 2012. 481(7381): p. 306-13.
2. Fares, J., et al., Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther, 2020. 5(1): p. 28.
3. Baghban, R., et al., Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal, 2020. 18(1): p. 59.
4. Jain, R.K., Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol, 2013. 31(17): p. 2205-18.
5. Luo, J., N.L. Solimini, and S.J. Elledge, Principles of cancer therapy: oncogene and non-oncogene addiction. Cell, 2009. 136(5): p. 823-37.
6. Labani-Motlagh, A., M. Ashja-Mahdavi, and A. Loskog, The Tumor Microenvironment: A Milieu Hindering and Obstructing Antitumor Immune Responses. Front Immunol, 2020. 11: p. 940.
7. Solimini, N.L., J. Luo, and S.J. Elledge, Non-oncogene addiction and the stress phenotype of cancer cells. Cell, 2007. 130(6): p. 986-8.
8. Bota, D.A. and K.J. Davies, Mitochondrial Lon protease in human disease and aging: Including an etiologic classification of Lon-related diseases and disorders. Free Radic Biol Med, 2016. 100: p. 188-198.
9. Szczepanowska, K. and A. Trifunovic, Mitochondrial matrix proteases: quality control and beyond. Febs j, 2021.
10. Voos, W. and K. Pollecker, The Mitochondrial Lon Protease: Novel Functions off the Beaten Track? Biomolecules, 2020. 10(2).
11. Bota, D.A. and K.J. Davies, Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol, 2002. 4(9): p. 674-80.
12. Fukuda, R., et al., HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell, 2007. 129(1): p. 111-22.
13. Kita, K., T. Suzuki, and T. Ochi, Diphenylarsinic acid promotes degradation of glutaminase C by mitochondrial Lon protease. J Biol Chem, 2012. 287(22): p. 18163-72.
14. Lu, B., et al., Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA+ Lon protease. Mol Cell, 2013. 49(1): p. 121-32.
15. Kao, T.Y., et al., Mitochondrial Lon regulates apoptosis through the association with Hsp60-mtHsp70 complex. Cell Death Dis, 2015. 6(2): p. e1642.
16. Quirós, P.M., C. Bárcena, and C. López-Otín, Lon protease: A key enzyme controlling mitochondrial bioenergetics in cancer. Mol Cell Oncol, 2014. 1(4): p. e968505.
17. Quirós, P.M., et al., ATP-dependent Lon protease controls tumor bioenergetics by reprogramming mitochondrial activity. Cell Rep, 2014. 8(2): p. 542-56.
18. Pinti, M., et al., Emerging role of Lon protease as a master regulator of mitochondrial functions. Biochim Biophys Acta, 2016. 1857(8): p. 1300-1306.
19. Cheng, C.W., et al., Overexpression of Lon contributes to survival and aggressive phenotype of cancer cells through mitochondrial complex I-mediated generation of reactive oxygen species. Cell Death Dis, 2013. 4(6): p. e681.
20. Kuo, C.L., et al., Mitochondrial oxidative stress by Lon-PYCR1 maintains an immunosuppressive tumor microenvironment that promotes cancer progression and metastasis. Cancer Lett, 2020. 474: p. 138-150.
21. Cheng, A.N., et al., Mitochondrial Lon-induced mtDNA leakage contributes to PD-L1-mediated immunoescape via STING-IFN signaling and extracellular vesicles. J Immunother Cancer, 2020. 8(2).
22. Pan, J.S., M.Z. Hong, and J.L. Ren, Reactive oxygen species: a double-edged sword in oncogenesis. World J Gastroenterol, 2009. 15(14): p. 1702-7.
23. Sabharwal, S.S. and P.T. Schumacker, Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel? Nat Rev Cancer, 2014. 14(11): p. 709-21.
24. Diebold, L. and N.S. Chandel, Mitochondrial ROS regulation of proliferating cells. Free Radic Biol Med, 2016. 100: p. 86-93.
25. Weinberg, F. and N.S. Chandel, Reactive oxygen species-dependent signaling regulates cancer. Cell Mol Life Sci, 2009. 66(23): p. 3663-73.
26. Weinberg, F. and N.S. Chandel, Mitochondrial metabolism and cancer. Ann N Y Acad Sci, 2009. 1177: p. 66-73.
27. Panieri, E. and M.M. Santoro, ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis, 2016. 7(6): p. e2253.
28. Hamanaka, R.B. and N.S. Chandel, Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci, 2010. 35(9): p. 505-13.
29. Karin, M., NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol, 2009. 1(5): p. a000141.
30. Massagué, J., TGFbeta in Cancer. Cell, 2008. 134(2): p. 215-30.
31. Rhyu, D.Y., et al., Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells. J Am Soc Nephrol, 2005. 16(3): p. 667-75.
32. Multhoff, G., M. Molls, and J. Radons, Chronic inflammation in cancer development. Front Immunol, 2011. 2: p. 98.
33. Mittal, M., et al., Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal, 2014. 20(7): p. 1126-67.
34. Ngo, J.K. and K.J. Davies, Mitochondrial Lon protease is a human stress protein. Free Radic Biol Med, 2009. 46(8): p. 1042-8.
35. Zhao, Y., et al., Regulation of COX-2 expression and IL-6 release by particulate matter in airway epithelial cells. Am J Respir Cell Mol Biol, 2009. 40(1): p. 19-30.
36. Liu, J., et al., The ROS-mediated activation of IL-6/STAT3 signaling pathway is involved in the 27-hydroxycholesterol-induced cellular senescence in nerve cells. Toxicol In Vitro, 2017. 45(Pt 1): p. 10-18.
37. Yoon, S., et al., STAT3 transcriptional factor activated by reactive oxygen species induces IL6 in starvation-induced autophagy of cancer cells. Autophagy, 2010. 6(8): p. 1125-38.
38. Lee, H., A.J. Jeong, and S.K. Ye, Highlighted STAT3 as a potential drug target for cancer therapy. BMB Rep, 2019. 52(7): p. 415-423.
39. Kumari, N., et al., Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol, 2016. 37(9): p. 11553-11572.
40. Binnewies, M., et al., Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med, 2018. 24(5): p. 541-550.
41. Rogovskii, V., Modulation of Inflammation-Induced Tolerance in Cancer. Front Immunol, 2020. 11: p. 1180.
42. Medzhitov, R., Origin and physiological roles of inflammation. Nature, 2008. 454(7203): p. 428-35.
43. Landskron, G., et al., Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res, 2014. 2014: p. 149185.
44. Kim, J., et al., IL-10 production in cutaneous basal and squamous cell carcinomas. A mechanism for evading the local T cell immune response. J Immunol, 1995. 155(4): p. 2240-7.
45. Greten, F.R. and S.I. Grivennikov, Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity, 2019. 51(1): p. 27-41.
46. Barilla, R.M., et al., Specialized dendritic cells induce tumor-promoting IL-10(+)IL-17(+) FoxP3(neg) regulatory CD4(+) T cells in pancreatic carcinoma. Nat Commun, 2019. 10(1): p. 1424.
47. Yang, T., et al., Correlation between MDSC and Immune Tolerance in Transplantation: Cytokines, Pathways and Cell-cell Interaction. Curr Gene Ther, 2019. 19(2): p. 81-92.
48. Xiang, H., et al., Cancer-Associated Fibroblasts Promote Immunosuppression by Inducing ROS-Generating Monocytic MDSCs in Lung Squamous Cell Carcinoma. Cancer Immunol Res, 2020. 8(4): p. 436-450.
49. Blanco, P., et al., Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev, 2008. 19(1): p. 41-52.
50. Seki, S., et al., Role of liver NK cells and peritoneal macrophages in gamma interferon and interleukin-10 production in experimental bacterial peritonitis in mice. Infect Immun, 1998. 66(11): p. 5286-94.
51. Chomarat, P., et al., Interferon gamma inhibits interleukin 10 production by monocytes. J Exp Med, 1993. 177(2): p. 523-7.
52. Asadullah, K., W. Sterry, and H.D. Volk, Interleukin-10 therapy--review of a new approach. Pharmacol Rev, 2003. 55(2): p. 241-69.
53. Tian, G., et al., Targeting IL-10 in auto-immune diseases. Cell Biochem Biophys, 2014. 70(1): p. 37-49.
54. Itakura, E., et al., IL-10 expression by primary tumor cells correlates with melanoma progression from radial to vertical growth phase and development of metastatic competence. Mod Pathol, 2011. 24(6): p. 801-9.
55. Gastl, G.A., et al., Interleukin-10 production by human carcinoma cell lines and its relationship to interleukin-6 expression. Int J Cancer, 1993. 55(1): p. 96-101.
56. Liu, Y., et al., Expression cloning and characterization of a human IL-10 receptor. J Immunol, 1994. 152(4): p. 1821-9.
57. Riley, J.K., et al., Interleukin-10 receptor signaling through the JAK-STAT pathway. Requirement for two distinct receptor-derived signals for anti-inflammatory action. J Biol Chem, 1999. 274(23): p. 16513-21.
58. Schülke, S., Induction of Interleukin-10 Producing Dendritic Cells As a Tool to Suppress Allergen-Specific T Helper 2 Responses. Front Immunol, 2018. 9: p. 455.
59. Moore, K.W., et al., Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol, 2001. 19: p. 683-765.
60. Batten, M., et al., Cutting edge: IL-27 is a potent inducer of IL-10 but not FoxP3 in murine T cells. J Immunol, 2008. 180(5): p. 2752-6.
61. Terai, M., et al., Interleukin 6 mediates production of interleukin 10 in metastatic melanoma. Cancer Immunol Immunother, 2012. 61(2): p. 145-155.
62. Bosmann, M. and P.A. Ward, Modulation of inflammation by interleukin-27. J Leukoc Biol, 2013. 94(6): p. 1159-65.
63. Gabay, C., Interleukin-6 and chronic inflammation. Arthritis Res Ther, 2006. 8 Suppl 2(Suppl 2): p. S3.
64. Steinman, R.M., Decisions about dendritic cells: past, present, and future. Annu Rev Immunol, 2012. 30: p. 1-22.
65. Steinman, R.M., Linking innate to adaptive immunity through dendritic cells. Novartis Found Symp, 2006. 279: p. 101-9; discussion 109-13, 216-9.
66. Fucikova, J., et al., Induction of Tolerance and Immunity by Dendritic Cells: Mechanisms and Clinical Applications. Front Immunol, 2019. 10: p. 2393.
67. Preynat-Seauve, O., et al., Tumor-infiltrating dendritic cells are potent antigen-presenting cells able to activate T cells and mediate tumor rejection. J Immunol, 2006. 176(1): p. 61-7.
68. Diamond, M.S., et al., Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med, 2011. 208(10): p. 1989-2003.
69. Apetoh, L., et al., Harnessing dendritic cells in cancer. Semin Immunol, 2011. 23(1): p. 42-9.
70. Scarlett, U.K., et al., Ovarian cancer progression is controlled by phenotypic changes in dendritic cells. J Exp Med, 2012. 209(3): p. 495-506.
71. Wang, H.M., et al., Obtusilactone A and (-)-sesamin induce apoptosis in human lung cancer cells by inhibiting mitochondrial Lon protease and activating DNA damage checkpoints. Cancer Sci, 2010. 101(12): p. 2612-20.
72. Thomas, P. and T.G. Smart, HEK293 cell line: a vehicle for the expression of recombinant proteins. J Pharmacol Toxicol Methods, 2005. 51(3): p. 187-200.
73. Sung, Y.J., et al., Mitochondrial Lon sequesters and stabilizes p53 in the matrix to restrain apoptosis under oxidative stress via its chaperone activity. Cell Death Dis, 2018. 9(6): p. 697.
74. Benkhart, E.M., et al., Role of Stat3 in lipopolysaccharide-induced IL-10 gene expression. J Immunol, 2000. 165(3): p. 1612-7.
75. Williams, L., et al., Signal transducer and activator of transcription 3 is the dominant mediator of the anti-inflammatory effects of IL-10 in human macrophages. J Immunol, 2004. 172(1): p. 567-76.
76. Riebe, C., et al., Phosphorylation of STAT3 in head and neck cancer requires p38 MAPKinase, whereas phosphorylation of STAT1 occurs via a different signaling pathway. Anticancer Res, 2011. 31(11): p. 3819-25.
77. Meng, A., X. Zhang, and Y. Shi, Role of p38 MAPK and STAT3 in lipopolysaccharide-stimulated mouse alveolar macrophages. Exp Ther Med, 2014. 8(6): p. 1772-1776.
78. Alshamsan, A., et al., Validation of bone marrow derived dendritic cells as an appropriate model to study tumor-mediated suppression of DC maturation through STAT3 hyperactivation. J Pharm Pharm Sci, 2010. 13(1): p. 21-6.
79. Saxena, A., et al., Interleukin-10 paradox: A potent immunoregulatory cytokine that has been difficult to harness for immunotherapy. Cytokine, 2015. 74(1): p. 27-34.
80. Tago, K., et al., STAT3 and ERK pathways are involved in cell growth stimulation of the ST2/IL1RL1 promoter. FEBS Open Bio, 2017. 7(2): p. 293-302.
81. Rojanasakul, Y., Linking JNK-STAT3-Akt signaling axis to EZH2 phosphorylation: a novel pathway of carcinogenesis. Cell Cycle, 2013. 12(2): p. 202-3.
82. Staples, K.J., et al., IL-10 induces IL-10 in primary human monocyte-derived macrophages via the transcription factor Stat3. J Immunol, 2007. 178(8): p. 4779-85.
83. Emmerich, J., et al., IL-10 directly activates and expands tumor-resident CD8(+) T cells without de novo infiltration from secondary lymphoid organs. Cancer Res, 2012. 72(14): p. 3570-81.
84. Qiao, J., et al., Targeting Tumors with IL-10 Prevents Dendritic Cell-Mediated CD8(+) T Cell Apoptosis. Cancer Cell, 2019. 35(6): p. 901-915.e4.
85. Mumm, J.B., et al., IL-10 elicits IFNγ-dependent tumor immune surveillance. Cancer Cell, 2011. 20(6): p. 781-96.
86. Ruffell, B., et al., Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell, 2014. 26(5): p. 623-37.
87. Sun, Z., et al., IL10 and PD-1 Cooperate to Limit the Activity of Tumor-Specific CD8+ T Cells. Cancer Res, 2015. 75(8): p. 1635-44.
88. Chen, G., et al., Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature, 2018. 560(7718): p. 382-386.
89. Yin, X., et al., PPARα Inhibition Overcomes Tumor-Derived Exosomal Lipid-Induced Dendritic Cell Dysfunction. Cell Rep, 2020. 33(3): p. 108278.
90. Vignard, V., et al., MicroRNAs in Tumor Exosomes Drive Immune Escape in Melanoma. Cancer Immunol Res, 2020. 8(2): p. 255-267.
91. Languino, L.R., et al., Exosome-mediated transfer from the tumor microenvironment increases TGFβ signaling in squamous cell carcinoma. Am J Transl Res, 2016. 8(5): p. 2432-7.
92. Ringuette Goulet, C., et al., Exosomes Induce Fibroblast Differentiation into Cancer-Associated Fibroblasts through TGFβ Signaling. Mol Cancer Res, 2018. 16(7): p. 1196-1204.