簡易檢索 / 詳目顯示

研究生: 王志銘
Wang, Chih-Ming
論文名稱: 擔載Co/Mo觸媒於含釩化物載體上進行深度加氫脫硫之研究
Deep Hydrodesulfurization over Co/Mo Catalysts Supported on Oxides Containing Vanadium
指導教授: 王奕凱
Wang, Ikai
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 130
中文關鍵詞: 加氫脫硫鈷鉬金屬硫化物混合金屬氧化物dibenzothiophene4,6-dimethyldibenzothiophene
外文關鍵詞: hydrodesulfurization, cobalt-molybdenum sulfides, mixed oxides, dibenzothiophene, 4,6-dimethyldibenzothiophene
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用含浸釩的鹽類來進行修飾TiO2-ZrO2與γ-Al2O3載體。在dibenzothiophene (DBT)與4,6-dimethyldibenzothiophene (46DMDBT)的加氫脫硫實驗中,此類釩修飾過的觸媒展現出良好的氫化途徑的選擇性。以CoMo/(V2O5/TiO2-ZrO2)觸媒對DBT進行加氫脫硫時,氫化途徑(HYD)與直接脫硫途徑(DDS)的比值為3.1;而相同條件下,在CoMo/(V2O5/γ-Al2O3)上,HYD/DDS則是為0.9。此時CoMo/γ-Al2O3上的值則僅為0.2。雖然DBT在CoMo/γ-Al2O3觸媒上的活性是高於在CoMo/(V2O5/TiO2-ZrO2)觸媒上。但是以46DMDBT為反應物時,卻得到相反的結果。主要是因為此修飾過的觸媒具有較高的氫化能力,並且含浸的釩與載體本身具有的較多與較酸的酸性點也會幫助46DMDBT的反應。
    在TPR的實驗中指出:CoO-MoO3在TiO2-ZrO2與V2O5修飾的載體上是比較容易被還原的。這代表著觸媒與載體間作用力的不同,因此可能形成與γ-Al2O3載體上不同的觸媒形貌:一些具有氫化活性點的單層或是較薄的結構。此外,XPS的結果則顯示出,含浸的釩會影響到MoS2與載體間的作用力。而在這二元的V-Mo硫化物上所產生的synergetic effect,可以促使觸媒的反應活性點更容易以HYD途徑進行加氫脫硫。


    TiO2-ZrO2 and γ-Al2O3 supports were modified by impregnation with a vanadium salt. The hydrodesulfurization (HDS) of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (46DMDBT) showed that the selectivity of the hydrogenation (HYD) pathway was greatly increased by this modification. The ratio of HYD to direct desulfurization (DDS) pathway in the HDS of DBT over CoMo/(V2O5/TiO2-ZrO2) was 3.1 and over CoMo/(V2O5/γ-Al2O3) it was 0.9. The reactivity of DBT over CoMo/γ-Al2O3 was higher than that over CoMo/(V2O5/TiO2-ZrO2), while the opposite was true for the reactivity of 46DMDBT, which was due to the higher hydrogenation activity, and the more acidic sites of the impregnated V2O5 and the mixed metal-oxides supports. Temperature-programmed reduction indicated that CoO-MoO3 on the TiO2-ZrO2 and V2O5 modified supports was more reducible and possibly has a different morphology than on γ-Al2O3. Furthermore, the results of X-ray photoelectron spectroscopy indicated that the impregnated V2O5 affected the interaction between MoS2 and the supports. Thus, the synergetic effect of binary V-Mo sulfides could induce active sites to facilitate the HYD pathway.

    目錄 謝誌...............................................................................................................................I 中文摘要......................................................................................................................II 英文摘要.....................................................................................................................III 目錄.............................................................................................................................IV 圖目錄......................................................................................................................VIII 表目錄.......................................................................................................................XII 第一章、緒論.................................................................................................................1 1.1燃料油的限制.................................................................................................1 1.2參考文獻.........................................................................................................5 第二章、文獻回顧.......................................................................................................6 2.1 燃料油中的硫化物............................................................................................6 2.2 硫化物的反應途徑與結構上的障礙................................................................9 2.2.1 反應途徑.....................................................................................................9 2.2.2 結構上的障礙.............................................................................................9 2.3 加氫脫硫使用之觸媒......................................................................................11 2.3.1 加氫脫硫觸媒...........................................................................................11 2.3.2 加氫脫硫觸媒使用之載體.......................................................................12 2.4 本實驗室先前之研究......................................................................................15 2.5 觸媒製備目標與改善方法..............................................................................18 2.5.1 改善觸媒的加氫能力...............................................................................19 2.5.2 製備含有酸性的雙功能型觸媒...............................................................20 2.4.3改善原有的氧化鋁載體.............................................................................24 2.6 結論..................................................................................................................26 2.7 參考文獻..........................................................................................................27 第三章、觸媒的製備與分析.......................................................................................30 3.1 觸媒的製備......................................................................................................30 3.1.1 TiO2-ZrO2-V2O5的製備.............................................................................30 3.1.2 γ-Al2O3的製備...........................................................................................31 3.1.3 V2O5之含浸................................................................................................31 3.1.4 CoO(或NiO)與MoO3之含浸....................................................................31 3.2 載體與觸媒的特性分析:................................................................................32 3.2.1 X-射線繞射................................................................................................32 3.2.2 表面積及孔洞分佈...................................................................................32 3.2.3 TPR程溫還原............................................................................................32 3.2.4 高解析電子能譜儀(XPS).........................................................................34 3.2.5穿透式電子顯微鏡(TEM) .........................................................................35 3.2.6拉曼光譜儀(Raman) ..................................................................................36 3.3 載體與觸媒分析結果......................................................................................37 3.3.1 XRD分析結果...........................................................................................37 3.3.2 表面積與孔洞分析之結果.......................................................................37 3.3.3 TPR之測試結果........................................................................................42 3.3.4 XPS分析結果............................................................................................47 1. 載體的XPS分析結果.................................................................................47 2. 擔載CoMo觸媒後的XPS分析結果.........................................................50 3.3.5 TEM分析結果...........................................................................................57 3.3.6 拉曼光譜分析結果...................................................................................60 3.4 結論..................................................................................................................68 3.5 參考文獻..........................................................................................................70 第四章、加氫脫硫反應活性測定...............................................................................72 4.1實驗規劃............................................................................................................72 4.1.1 反應設置與反應條件...............................................................................72 4.1.2反應質傳阻力測試結果.............................................................................75 4.1.3 產物分析...................................................................................................77 4.2 觸媒活性..........................................................................................................83 4.2.1 比較不同載體HDS of DBT.....................................................................83 4.2.2 比較不同載體HDS of 46DMDBT...........................................................97 4.2.3 HDS of DBT 進料包含5 wt% CS2.........................................................100 4.2.4 比較不同含量的V2O5/(γ-Al2O3或TiO2-ZrO2) .....................................105 4.2.5 比較不同Co-Mo觸媒含量.....................................................................110 4.3 反應操作條件對脫硫反應之影響................................................................112 4.3.1比較不同的反應溫度...............................................................................112 4.3.2 比較不同反應壓力.................................................................................114 4.3.3 比較不同CS2濃度..................................................................................116 4.4 比較不同促進劑............................................................................................119 4.4.1 以NiO為促進劑.....................................................................................119 4.4.2以BIP取代DBT,測試氫化活性.............................................................121 4.5 結論................................................................................................................122 4.6 參考文獻........................................................................................................124 第五章、結論.............................................................................................................126 第六章、未來展望.....................................................................................................128

    第一章
    [1] 行政院環保署, 環署空字第○九三○○八九七七三號令修正發布第四條條文
    [2] T.C. Ho, Catal. Today 98 (2004) 3.
    [3] M. Sanati, B. Harrysson, M. Faghihi, B.Gevert and S. Jaras, in Catalysis, Vol. 16, Royal Society of Chemistry, Cambridge, 2002, p.1.
    [4] Alain P. Lamourelle, 2001 NPRA ANNUAL MEETING, March 18-20, 2001, New Orleans, Louisiana.
    [5] K. G. Knudsen, B. H. Cooper, H. Topsøe, Appl. Catal. A 189 (1999) 205.
    [6] C. Song, X. Ma, Appl. Catal. B 41 (2003) 207.

    第二章
    [1] 吳榮宗, 工業觸媒概論, 375.
    [2] C. Song, Am. Chem. Soc., Div. Fuel Chem. Prepr. 47 (2002) 438.
    [3] K. Segawa, K. Takahashi, S. Satoh, Catal. Today 63 (2000) 123.
    [4] C.S. Song, Catal. Today 86 (2003) 211.
    [5] X.L. Ma, K. Sakanishi, I. Mochida, Ind. Eng. Chem. Res. 33 (1994) 218.
    [6] X.L. Ma, K. Sakanishi, I. Mochida, Ind. Eng. Chem. Res. 35 (1996) 2487.
    [7] G. Murali Dhar, B.N. Srinivas, M.S. Rana, Manoj Kumar, S.K. Maity, Catal. Today 86 (2003) 45.
    [8] M. Henker, P.P. Wendlandt, J. Valyon, P. Bornamann, Appl. Catal. 69 (1991) 205.
    [9] M. Henker, K.P. Wendlandt, E. Sergejevich, O.P. Tkachenko, Appl. Catal. 61 (1990) 253.
    [10] S. Rajagopal, T.L. Grimm, D.J. Collins, R. Miranda, J. Catal. 137 (1992) 453.
    [11] J. Ramirez Diaz, J. Fuentes, G. Diaz, M. Vrinat, M. Breysse, M. Lacroix, Appl. Catal. 52 (1989) 211.
    [12] K.S.P. Rao, G. Murali Dhar, J. Catal. 115 (1989) 277.
    [13] G. Murali Dhar, F.E. Massoth, J. Shabtai, J. Catal. 85 (1994) 44.
    [14] F.E. Massoth, G. Murali Dhar, J. Shabtai, J. Catal. 85 (1994) 52.
    [15] M. Adachi, K. Fjiujimo, Sekiyu Gakkashi 44 (2001) 188.
    [16] C. Flego, V. Arrigoni, M. Ferrari, R. Riva, L. Zanbelli, Catal. Today 65 (2001) 265.
    [17] R. Zhao, C. Liu, C. Yin, W. Liang, Petrol. Sci. Technol. 19 (2001) 495.
    [18] E. Rodenas, T. Yamaguchi, H. Hattori, K. Tanabe, J. Catal. 69 (1981) 434.
    [19] Y. Okamoto, A. Maezawa, T. Imanaka, J. Catal. 120 (1989) 29.
    [20] H. Tanaka, M. Boulinguiez, M. Vrinat, Catal. Today 29 (1996) 209.
    [21] F.P. Daly, H. Ando, J.L. Schmitt, E.A. Sturm, J. Catal. 108 (1987) 401.
    [22] B.M. Reddy, A. Khan, Catal. Rev. 47 (2005) 257.
    [23] C.I. Chu, I. Wang, I&EC Process Des. Dev. 21 (1982) 338.
    [24] I. Wang, R.C. Chang, J of Catal. 117 (1989) 266.
    [25] G. Pérot, Catalysis Today 86 (2003) 111.
    [26] S.K. Bej, S.K. Maity, U.T. Turaga, Energy Fuels 18 ( 2004) 1227.
    [27] M. Houalla, D.H. Broderick, A.V. Sapre, N.K. Nag, V.H.J. deBeer, B.C. Gates, H. Kwart, J. Catal. 61 (1980) 523.
    [28] V. Lamure-Meille, E. Schulz, M. Lemaire, M. Vrinat, Appl. Catal. 131 (1995) 143.
    [29] T. Isoda, S. Nagao, X. Ma, Y. Korai, I. Mochida, Energy Fuel 10 (1996) 482.
    [30] X. Ma, K. Sakanishi, T. Isoda, I. Mochida, Hydrotreating Technology for Pollution Control, Marcel Dekker, New York, 1996.
    [31] T. Isoda, X. Ma, I. Mochida, Sekiyu Gakkaishi 37 (1994) 368.
    [32] S.P. Ahuja, M.L. Derrien, J.F. Lepage, Ind. Eng. Chem. Prod. Res. Dev. 9 (1970) 272.
    [33] A. Stanislaus, B.H. Cooper, Catal. Rev.-Sci. Eng. 36 (1994) 75.
    [34] T. Isoda, S. Nagao, X. Ma, Y. Korai, I. Mochida, Energy Fuel 10 (1996) 487.
    [35] T. Isoda, S. Nagao, X. Ma, Y. Korai, I. Mochida, Appl. Catal. A 150 (1997) 1.
    [36] L. Vradman, M.V. Landau, M. Herskowitz, Catal. Today 48 (1999) 41.
    [37] M.V. Landau, D. Berger, M. Herskowitz, J. Catal. 158 (1996) 236.
    [38] T. Isoda, S. Nagao, Y. Korai, I. Mochida, Am. Chem. Soc. Prepr. Div. Petrol. Chem. 41 (1996) 559.
    [39] T. Isoda, S. Nagao, Y. Korai, I. Mochida, Am. Chem. Soc. Prepr. Div. Petrol. Chem. 41 (1996) 563.
    [40] T. Isoda, Y. Takase, H. Takagi, K. Kusakabe, S. Morooka, Am. Chem. Soc. Prepr. Div. Petrol. Chem. 43 (1998) 547.
    [41] T. Isoda, Y. Takase, K. Kusakabe, S. Morooka, Am. Chem. Soc. Prepr. Div. Petrol. Chem. 43 (1998) 575.
    [42] T. Isoda, Y. Takase, K. Kusakabe, S. Morooka, Energy Fuels 14 (2000) 585.
    [43] M. Yumoto, K. Usui, K. Watanabe, K. Idei, H. Yamazaki, Catal. Today 35 (1997) 45.
    [44] T. Fujikawa, O. Chiyoda, M. Tsukagoshi, K. Idei, S. Takehara, Catal. Today 45 (1998) 307.
    [45] E. Lecrenay, I. Mochida, Stud. Surf. Sci. Catal. 106 (1997) 333.
    [46] E. Lecrenay, K. Sakanishi, I. Mochida, Catal. Today 39 (1997) 13.
    [47] C. Song, K.M. Reddy, H. Leta, Am. Chem. Soc. Prepr. Div. Petrol. Chem. 43 (1998) 534.
    [48] C. Song, K.M. Reddy, Appl. Catal. A 176 (1999) 1.
    [49] T.Z. Ling, B.Z. wan, H.P. Lin, C.Y. Mou, Ind. Eng. Chem. Res. 48 (2009) 1797.

    第三章
    [1] I. Wang, R.C. Chang, J. Catal. 117 (1989) 266.
    [2] J. Fung, I. Wang, J. Catal. 130 (1991) 577.
    [3] R. Thomas, V.H.J. deBeer, J.A. Moulijn, Bull. Soc. Chim. Belg. 90 (1981) 1349.
    [4] P. Arnoldy, J.A. Moulijn, J. Catal. 93 (1985) 38.
    [5] P. Arnoldy, M.C. Franken, B. Scheffer, J.A. Moulijn, J. Catal. 96 (1985) 381.
    [6] J.C. Wu, C.S. Chung, C.L. Ay, I. Wang, J. Catal. 87 (1984) 98.
    [7] J.P. Janssens, A.D. Van Langeveld, J.A. Moulijn, Appl. Catal. A: Gen. 179 (1999) 229.
    [8] B. M. Reddy, B. Chowdhury, E.P. Reddy, A. Fernandez, J. Mol. Catal. A: Chem. 162 (2000) 431.
    [9] P. Ratnasamy, J. Catal. 40 (1975) 137.
    [10] N.K. Nag, J. Phys. Chem. 91 (1987) 2324.
    [11] R.R. Chianelli, G. Berhault, P. Raybaud, S. Kasztelan, J. Hafner, H. Toulhoat, Appl. Catal. A: Gen. 227 (2002) 83.
    [12] M. Lacroix, N. Boutarfa, C. Guillard, M. Vrinat, M. Breysse, J. Catal. 120 (1989) 473.
    [13] C. Guillard, M. Lacroix, M. Vrinat, M. Breysse, B. Mocaer, J. Grimblot, T. des Courieres, D. Faure, Catal. Today 7 (1990) 587.
    [14] D. Wang, W. Qian, A. Ishihara, T. Kabe, J. Catal. 203 (2001) 322.
    [15] H. Topsøe, B. Hinnemann, J.K. Nørskov, J.V. Lauritsen, F. Besenbacher, P.L. Hansen, G. Hytoft, R.G. Egeberg, K.G. Knudsen, Catal. Today 107-108 (2005) 12.
    [16] G. Mestl, T.K.K. Srinivasan, Catal. Rev.-Sci. Eng. 40 (1998) 451.
    [17] A.D. Desikan, L. Huang, S.T. Oyama, J. Chem. Soc. Faraday Trans. 88 (1992) 3357.
    [18] K. Inumaru, M. Misono, T. Okuhara, Appl. Catal. A: Gen. 149 (1997) 133.
    [19] C.B. Rodella, R.W.A. Franco, C.J. Magon, J.P. Donoso, L.A.O. Nunes, M.J. Saeki, M.A. Aegerter, A.O. Florentino, J. Sol-Gel Sci. Technol. 25 (2002) 75.

    第四章
    [1] M. Houalla, N.K. Nag, A.V. Sapre, D.H. Broderick, B.C. Gates, AIChE J. 24 (1978) 1015.
    [2] G.H. Singhal, R.L. Espino, J.E. Sobel, G.A. Huff, J. Catal. 67 (1981) 457.
    [3] M. Egorova, R. Prins, J. Catal. 225 (2004) 417.
    [4] X. Li, A. Wang, M. Egorova, R. Prins, J. Catal. 250 (2007) 283.
    [5] M. Daage, R.R. Chianelli, J. Catal. 149 (1994) 414.
    [6] H. Topsøe, B. Hinnemann, J.K. Nørskov, J.V. Lauritsen, F. Besenbacher, P.L. Hansen, G. Hytoft, R.G. Egeberg, K.G. Knudsen, Catal. Today 107-108 (2005) 12.
    [7] P.G. Moses, B. Hinnemann, H. Topsøe, J.K. Nørskova, J. Catal. 248 (2007) 188.
    [8] A. Nishijima, H. Shimada, T. Sato, Y. Yoshimura, N. Matsubayashi, T. Kameoka, J. Jpn. Petrol. Inst. (Sekiyu Gakkaishi) 32 (1989) 35.
    [9] R. Hubaut, Appl. Catal. A: Gen. 322 (2007) 121.
    [10] M. Lacroix, N. Boutarfa, C. Guillard, M. Vrinat, M. Breysse, J. Catal. 120 (1989) 473.
    [11] C. Guillard, M. Lacroix, M. Vrinat, M. Breysse, B. Mocaer, J. Grimblot, T. des Courieres, D. Faure, Catal. Today 7 (1990) 587.
    [12] M. Lacroix, C. Guillard, M. Breysse, M. Vrinat, J. Catal. 135 (1992) 304.
    [13] P. Betancourt, A. Rives, C.E. Scott, R. Hubaut, Catal. Today 57 (2000) 201.
    [14] C. E. Scott, B. P. Embaid, F. Gonzalez-Jimenez, R. Hubaut, J. Grimblot, J. Catal. 166 (1997) 333.
    [15] D.R. Kilanowski, H. Teeuwen, V.H.J. deBeer, B.C. Gates, G.C.A. Schuit, H. Kwart, J. Catal. 55 (1978) 129.
    [16] M. Houalla, D.H. Broderick, A.V. Sapre, N.K. Nag, V.H.J. deBeer, B.C. Gates, H. Kwart, J. Catal. 61 (1980) 523.
    [17] T. Kabe, A. Ishihara, Q. Zhang, Appl. Catal. A: Gen. 97(1993) L1.
    [18] X.L. Ma, K. Sakanishi, I. Mochida, Ind. Eng. Chem. Res. 35 (1996) 2487.
    [19] R.C. Chang, I. Wang, J. Catal. 107 (1987) 195.
    [20] D.D. Whitehurst, T. Isoda, I. Mochida, Adv. Catal. 42 (1998) 345.
    [21] S.K. Bej, S.K. Maity, U. T. Turaga, Energy Fuels 18 ( 2004) 1227.
    [22] M.V. Landau, D. Berger, M. Herskowitz, J. Catal. 159 (1996) 236.
    [23] T. Isoda, S. Nagao, X. Ma, Y. Korai, I. Mochida, Energy Fuels 10 (1996) 1078.
    [24] P. Michaud, J.L. Lemberton, G. Pérot, Appl. Catal. A: Gen. 169 (1998) 343.
    [25] F. Bataille, J.L. Lemberton, G. Pérot, P. Leyrit, T. Cseri, N. Marchal, S. Kasztelan, Appl. Catal. A 220 (2001) 191.
    [26] X.L. Ma, K. Sakanishi, I. Mochida, Ind. Eng. Chem. Res. 33 (1994) 218.
    [27] D.H. Broderick, B.C. Gates, AIChE J. 27 (1981) 663.
    [28] C. Calais, M. Lacroix, C. Geantet, M. Breysse, J. Catal. 144 (1993) 160.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE