研究生: |
歐益呈 |
---|---|
論文名稱: |
以熔融鹽加熱之熱交換器流動沸騰研究 Investigation of Flow Boiling Heat Transfer in Heat Exchanger with Molten Salt Heating |
指導教授: | 潘欽 |
口試委員: |
林清發
陳紹文 傅本然 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 熔融鹽 、熱交換器 、流動沸騰 |
外文關鍵詞: | Molten, Heat exchanger, Flow boiling |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對熔融鹽於太陽熱能發電系統應用設置一個實驗環路,以模擬電廠利用太陽熱能加熱熔融鹽之工作溫度,實驗時應用電熱器加熱熔融鹽到達熔融態後,透過活塞裝置將儲存桶中之高溫熔融鹽推入測試段中,在測試段中高溫熔融態熔融鹽的熱功率以熱交換器作為媒介傳遞給低溫工作流體(水或氦氣),熱側與冷側流體以逆向流動。研究上採用微流道及迷你流道的兩種熱交換器均以鋁合金6061為基材,其具有良好導熱能力。本研究應用放電、機械加工方式銑出流道分別製作微及迷你流道型熱交換器,再採用不鏽鋼夾合熱交換器並設置流體供應、輸出端的進、出口。微流道熱交換器兩側流道長、寬、深分別為40、0.4、0.4 mm;迷你流道熱交換器兩側流道長60、2、1.5 mm,流道數目均為5條。
研究內容探討氦氣在微流道熱交換器中,改變冷側質量通率(Ghe=16.9、23.7、30.5 kg/m2s)及熱側質量流率下,對於測試段溫度、熱通量、熱傳係數、熱效率影響。水在迷你流道熱交換器中,改變質量通率(Gwa=3.9、4.4、5 kg/m2s)及進口次冷度,對於測試段溫度、熱通量、沸騰曲線、平均熱傳遞係數、熱效率影響。氦氣實驗結果顯示,冷側流量對於熱交換器的熱傳特性影響顯著;在高質量通率氦氣實驗條件下均具有較高的熱通量、總熱傳遞係數及效率,其效率約在24-65%之間隨氦氣流量增加而增加。水的實驗結果顯示,高壁面溫度使水展現"過渡沸騰"的特性,壁溫越高熱通率越低。水的平均熱傳遞係數採用沸騰模式與對數平均溫差計算出結果差異小於20%。以水為工作流體的熱傳效率在75-90%之間。
This study explores an experimental investigation on single-phase and boiling heat transfer in micro- and minichannel heat exchangers (counter-current type), respectively, with molten salt heating, which is an application of a solar thermal power plant. For the present study, the heat of the solar thermal on molten salt is simulated by using electrical power supply. The high temperature liquefied molten salt (Hitec) is driven into the test section by the piston device. The working fluid in the hot side is molten salt and in the cold side is water (for the boiling experiment) or helium (for the single-phase flow experiment).
The heat exchangers are prepared from aluminum alloy materials through electric discharge machine and computer numerical control machine processes. Both of micro- and minichannel heat exchangers contain five channels on each side and are covered with stainless steel. The depth and width of the microchannel on both sides are both 0.4 mm, and the length of the microchannel is 40 mm. The depth, width, and length of the minichannel are 2 mm, 1.5 mm, and 60 mm, respectively. During the single-phase flow experiment, i.e., the cold side fluid is helium, the mass flux of helium is varied from 16.9 to 30.5 kg/m2s, and the mass flux of molten salt is varied from 306 to 605 kg/m2s. Moreover, during the boiling experiments, i.e., the cold side fluid is water, the mass flux of water is varied from 3.9 to 5 kg/m2s.
The results of the single-phase flow experiment demonstrate that heat transfer characteristics are significantly influenced by the mass flux of the cold side fluid. The higher mass flux of helium leads to the better heat transfer performance (i.e., heat transfer rate, heat transfer coefficient, and effectiveness). The effectiveness of the single-phase flow experiment is 24%-65%. On the other hand, the results of the boiling experiment show the transition boiling characteristics of water, indicating that heat flux decreases with an increase in the wall temperature. The boiling heat transfer coefficients, calculated by two methods, i.e., boiling model and log-mean-temperature-difference (LMTD), show an insignificant difference, which is within 20%. Moreover, the effectiveness of the boiling experiment is 75%-90%.
[1]R. I. Dunn, P. J. Hearps, M. N. Wright, Molten-Salt Power Towers: Newly Commercial Concentrating Solar Storage, IEEE100 (2011) 2.
[2]IEA(International Energy Agency), Concentrating Solar Power, OCED IEA,2010, Paris.
[3]K. Lovegrove, A. Luzzi, Solar Thermal Power Systems, Encyclopedia of Physical Science and Technology, Third Edition, Volume 15, 223 –235.
[4]D. Barlev, R. Vidu, P. Stroeve, Innovation in concentrated solar power.
University of California Davis Solar Energy Collaborative Workshop, Davis,
CA, May 11, 2010.
[5]S.A. Kalogirou, Solar thermal collectors and applications, Progress in Energy
and Combustion Science 30 (3) (2004) 231–295.
[6]D. Kearney, U. Herrmann, B. Kelly, R. Mahoney, R. Cable, D. Blake, Assessment Of A Molten Salt Heat Transfer Fluid In A Paranolic Trough Solar Field, Journal of Solar Energy and Engineering (2002).
[7]T. Dang, J.-t. Teng, The effects of configurations on the performance of microchannel counter-flow heat exchangers-An experimental study, Applied Thermal Engineering 31 (2011) 3946-3955.
[8]T. Dang, J.-t. Teng, J.-C. Chu, A study on the simulation and experiment of a microchannel counter-flow heat exchanger, Applied Thermal Engineering 30 (2010) 2163-2172.
[9]N. García-Hernando, A. Acosta-Iborra, U. Ruiz-Rivas, M. Izquierdo, Experimental investigation of fluid flow and heat transfer in a single-phase liquid flow micro-heat exchanger, International Journal of Heat and Mass Transfer 52 (2009) 5433–5446.
[10]Y. Tang, Z. He, M. Pan, J. Wang, Ring-shaped microchannel heat exchanger based on turning process, Experimental Thermal and Fluid Science 34 (2010) 1398–1402.
[11]K J. Maloney, K. D. Fink, Tobias A. Schaedler, Joanna A. Kolodziejska, Alan J. Jacobsen, Christopher S. Roper, Multifunctional heat exchangers derived from three-dimensional micro-lattice structures, International Journal of Heat and Mass Transfer 55 (2012) 2486–2493.
[12]C.-W. Lu, J.-M. Huang, W.C. Nien, C.-C. Wang, A numerical investigation of the geometric effects on the performance of plate finned-tube heat exchanger, Energy Conversion and Management 52 (2011) 1638–1643.
[13]T.S. Khan, M.S. Khan, M.-C. Chyu, Z.H. Ayub, Experimental investigation of single phase convective heat transfer coefficient in a corrugated plate heat exchanger for multiple plate configurations, Applied Thermal Engineering 30 (2010) 1058–1065.
[14]S.-W. Kang, S.-C. Tseng, Analysis of effectiveness and pressure drop in microcross-flow heat exchanger, Applied Thermal Engineering 27 (2007) 877–885.
[15]J.-S. Kim, T.-H. Kang, I.-K. Kim, Surface treatment to improve corrosion resistance of Al plate heat exchangers, Transactions of Nonferrous Metals Society of China 19(2009) s28-31.
[16]M. I. Hasan, A.A. Rageb, M. Yaghoubi, H. Homayoni, Influence of channel geometry on the performance of a counter flow microchannel heat exchanger, International Journal of Thermal Sciences 48(2009) 1607-1618.
[17]R. J. Kee, B. B. Almand, J. M. Blasi, B. L. Rosen, M. Hartmann, N. P. Sullivan, H. Zhu, A. R. Manerbino, S. Menzer, W. G. Coors, J. L. Martin, The design, fabrication, and evaluation of a ceramic counter-flow microchannel heat exchanger, Applied Thermal Engineering 31 (2011) 2004-2012.
[18]S. Pethkool, S. Eiamsa-ard, S. Kwankaomeng, P. Promvonge, Turbulent heat transfer enhancement in a heat exchanger using helically corrugated tube, International Communications in Heat and Mass Transfer 38 (2011) 340–347.
[19]Y. Takeuchi, C. Park, K. Noborio, Y. Yamamoto, S. Konishi, Heat transfer in SiC compact heat exchanger, Fusion Engineering and Design 85 (2010) 1266–1270.
[20]T. Fend, W. Völker, R. Miebach, O. Smirnova, D. Gonsior, D. Schöllgen, P. Rietbrock, Experimental investigation of compact silicon carbide heat exchangers for high temperatures, International Journal of Heat and Mass Transfer 54 (2011) 4175-4181.
[21]R. I. Olivares, The thermal stability of molten nitrite/nitrates salt for solar thermal energy storage in different atmospheres, Solar Energy 86 (2012) 2576–2583.
[22]M. Yang, X. Yang, X. Yang, J. Ding, Heat transfer enhancement and performance of the molten salt receiver of a solar power tower, Applied Energy 87 (2010) 2808–2811.
[23]Y.-t. Wu, B. Liu, C.-f. Ma, H. Guo, Convective heat transfer in the laminar–turbulent transition region with molten salt in a circular tube, Experimental Thermal and Fluid Science 33 (2009) 1128–1132.
[24]B. Liu, Y.-t. Wu, C.-f. Ma, M. Ye, H. Guo, Turbulent convective heat transfer with molten salt in a circular pipe, International Communications in Heat and Mass Transfer 36 (2009) 912–916.
[25]Y.-T. Wu, C. Chen, B. Liu, C.-F. Ma, Investigation on forced convective heat transfer of molten salts in circular tubes, International Communications in Heat and Mass Transfer 39 (2012) 1550–1555.
[26]J. f. Lu, X. g. Sheng, J. Ding, J. Yang, Transition and turbulent convective heat transfer of molten salt in spirally grooved tube, Experimental Thermal and Fluid Science 47 (2013) 180-185.
[27]Frank G.F. Qin, X. Yang, Z. Ding, Y. Zuo, Y. Shao, R. Jiang, X. Yang, Thermocline stability criterions in single-tanks of molten salt thermal energy storage, Applied Energy 97 (2012) 816-821.
[28]D. Kearney , B. Kelly, U. Herrmann, R. Cable, J. Pacheco, R. Mahoney, H. Price, D. Blake, P. Nava, N. Potrovitza, Engineering aspects of a molten salt heat transfer fluid in a trough solar field, Energy 29 (2004) 861–870.
[29]U. Herrmann, B. Kelly, H. Price, Two-tank molten salt storage for parabolic trough solar power plants, Energy 29 (2004) 883–893.
[30]J. I. Ortega, J. I. Burgaleta, F. M. Téllez, Central Receiver System Solar Power Plant Using Molten Salt as Heat Transfer Fluid, Journal of Solar Energy Engineering, MAY 2008, Vol. 130 / 024501-1.
[31]X. Py, T. Azoumah, R. Olives, Concentrated solar power: Current technologies, major innovative issues and applicability to West African countries, Renewable and Sustainable Energy Reviews 18 (2013) 306-315.
[32]R. W. Bradshaw and D.E. Meeker, High-temperature stability of ternary nitrate molten salts for solar thermal energy systems, Solar Energy Materials 21 (1990) 51-60.
[33]D. Barlev, R. Vidu, P. Stroeve, Innovation in concentrated solar power, Solar Energy Materials & Solar Cells 95 (2011) 2703–2725.
[34]A. Gil, M. Medrano, I. Martorell, A. L. Zaro, P. Dolado, B. Zalba, L. F. Cabeza, State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization, Renewable and Sustainable Energy Reviews 14 (2010) 31–55.
[35]C. Chen, Y.-T. Wu, S.-T. Wang, C.-F. Ma, Experimental investigation on enhanced heat transfer in transversally corrugated tube with molten salt, Experimental Thermal and Fluid Science 47 (2013) 108–116.
[36]X. Yang, X. Yang, J. Ding, Y. Shao, Frank G.F. Qin, R. Jiang, Criteria for performance improvement of a molten salt thermocline storage system, Applied Thermal Engineering 48 (2012) 24 -31.
[37]Z. Yang, S. V. Garimella, Cyclic operation of molten-salt thermal energy storage in thermoclines for solar power plants, Applied Energy 103 (2013) 256–265.
[38]N. Boerema, G. Morrison, R. Taylor, G. Rosengarten, Liquid sodium versus Hitec as a heat transfer fluid in solar thermal central receiver systems, Solar Energy 86 (2012) 2293–2305.
[39]T. Wang, D. Mantha, R. G. Reddy, Novel low melting point quaternary eutectic system for solar thermal energy storage, Applied Energy 102 (2013) 1422–1429.
[40]D. P. D. Frank P. Incropera, Theodore L. Bergman, Adrienne S. Lavine, Fundamentals
of Heat and Mass Transfer, 6 ed. Asia: John Wiley & Sons, Inc, 2006..
[41]Y. A. Cengel, Heat And Mass Transfer, Third ed, Mc Graw Hill, Inc, 2006.
[42]R. E. Sonntag, C. Borgnakke, G. J. Van Wylen, Fundamentals of
Thermodynamics, 6 ed, John Wiley & Sons, Inc, 2003.
[43]L. C. Burmeister, Convective Heat Transfer, John Wiley & Sons, Inc, 1993.
[44]S. M. Ghiaasiaan, Convective Heat and Mass Transfer, cambridge university
press, 2011.
[45]B. R. Munson, D, F. Young, T. H. Okiishi, W. W. Huebsh, Fundamentals
of Fluid Mechanics, 6 ed, Asia: John Wiley & Sons, Inc, 2010.
[46]R. K. Shah, A. L. London, Laminar Flow Force Convection in Duts: a source book for
Compact heat exchanger analytical data, Academic Press New York San Francisco London, 1978.
[47]T.-L. Liu, B.-R. Fu, and C. Pan, "Boiling Heat Transfer of Co- and Counter-Current Microchannel Heat Exchangers with Gas Heating " International Journal of
Heat and Mass Transfer, 2012.
[48]M. S. Sohal, M. A. Ebner, P. Sabharwall, P. Sharpe, Engineering
Database of Liquid Salt Thermophysical and Thermochemical Properties, Idaho National Laboratory Idaho Falls, Idaho 83415,2010.
[49]S.-M. Kim, I. Mudawar, Universal approach to predicting saturated flow
boiling heat transferin mini/micro-channels – Part I. Dryout incipience quality,
International Journal of Heat and Mass Transfer 64 (2013) 1226–123 .
[50]S.-M. Kim, I. Mudawar,Universal approach to predicting saturated flow
boiling heat transfer in mini/micro-channels – Part II. Two-phase heat transfer coefficient, International Journal of Heat and Mass Transfer 64 (2013) 1239-1256.
[51]潘欽, 沸騰熱傳與雙相流, 1 ed. 台北市: 俊傑書局股份有限公司, 2001.