簡易檢索 / 詳目顯示

研究生: 張麗雯
Li-Wen Chang
論文名稱: 有機薄膜化二維分佈回饋型雷射之發光特性研究
Emission Characteristics of Organic Thin-film Lasers with Two-dimensional Distributed Feedback
指導教授: 楊士禮
Sidney S. Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電科技產業研發碩士專班
Interdisciplinary Program of Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 56
中文關鍵詞: 有機雷射自發性激發放大增益係數損耗係數反覆回饋式
外文關鍵詞: organic thin-film laser, two-dimensional distributed feedback, triangular lattice, DCJTB, amplified spontaneous emission
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要探討有機雷射的發光特性及設計原理。我們選用發紅光的有機小分子材料4-(dicyanomethy-lene)-2-terbuty1-6-(1,1,7,7-tetramethyljulolidin-4-y1-vinyl)-
    4H-pyrn (DCJTB) 做為雷射的增益介質,並且將其摻雜在不同分子量的高分子材料Poly(N-vinylcarbazole) (PVK)中以增加發光特性。我們利用自發性激發放大(Amplified spontaneous emission) 的理論定義出DCJTB在不同的光激發能量下,其增益係數與損耗係數的變化,以找出最合適的PVK摻雜分子量。雷射的共振腔設計則採用二維的反覆回饋式(distributed feedback)結構,並且利用電子束微影術(electron beam lithography)的製程完成結構製作,最後將有機溶液旋轉塗布上此二維的反覆回饋式結構便完成有機雷射的製作程序。透過外部激發光源的驅動,我們成功的觀測到雷射放光的現象,其發光波長為621奈米,在論文的最後也探討了雷射出光的遠場發光圖形。


    This thesis is concentrated on the emission behaviors of an optically pumped composite organic thin-film laser with two-dimensional distributed feedback (2D-DFB) structure. We use famous red fluorescent dye of 4-(dicyanomethy-lene)-2-terbuty1-6-(1,1,7,7-
    tetramethyljulolidin-4-y1-vinyl)-4H-pyran (DCJTB) as the laser gain media which reveals strongly amplified spontaneous emission (ASE) phenomenon. We report the optical gain and loss characteristics of DCJTB doped in Poly(N-vinylcarbazole) (PVK) of different molecular weight, 90000 and 1100000, respectively via ASE theory. 2D-DFB structure with triangular lattice is adopted for laser cavity and fabricates by electron beam lithography. With a suitable laser cavity and the high gain material, lasing action with peak wavelength of 621 nm is observed in the organic 2D-DFB laser. The far-field emission pattern is also discussion in this thesis.

    Chapter 1 Introduction……………………….............………..1 Chapter 2 Characteristics of Organic Materials…..................4 2.1 Energy levels of organic molecules…..............................................4 2.2 Absorption and emission characteristics of organic molecules…….6 2.3 Semiconducting properties of organic materials…………………...7 2.4 Properties of DCJTB……………………………………………….8 Chapter 3 Amplified Spontaneous Emission..........................11 3.1 Theories...........................................................................................11 3.2 Gain saturation................................................................................13 3.3 Waveguide loss................................................................................15 3.4 Experiments of measuring gain and loss coefficients.....................16 3.4.1 Sample preparation...................................................................16 3.4.2 Slab waveguide.........................................................................17 3.4.3 Emission and Absorption characteristics of DCJTB................18 3.4.4 Setup for ASE experiment........................................................20 3.5 Results and Discussions..................................................................21 3.5.1 Spectral Narrowing...................................................................21 3.5.2 Gain coefficients.......................................................................25 3.5.3 Loss coefficients.......................................................................26 Chapter 4 Two-dimensional Distributed Feedback Lasers...31 4.1 Bragg scattering..............................................................................31 4.2 Diffraction grating..........................................................................33 4.3 A design to 2D-DFB lasers.............................................................35 4.4 Fabrication of 2D-DFB laser..........................................................37 4.4.1 Electron beam lithography........................................................37 4.4.2 Fabrication process of 2D-DFB laser.......................................39 4.5 Setup for lasing experiment............................................................42 4.6 Results and Discussions..................................................................44 4.6.1 Lasing threshold.......................................................................44 4.6.2 Band diagram analysis.............................................................46 4.6.3 Far-field emission pattern.........................................................49 Chapter 5 Conclusions and outlook.........................................51 Bibliography...............................................................................54

    Bibliography
    1. A. J. Heeger, “Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials--Nobel Lecture,” J. Phys. Chem. B, 105, pp. 8475 (2001).
    2. K. Kobayashi, W. J. Blau, H. Tillman and H.-H. Hörhold, “Light Amplified and Lasing in a Stilbenoid Compound-Doped Glass-Clad Polymer Optical Fiber,” IEEE J. Quantum Electronics, 39, pp. 664-672 (2003).
    3. D. W. Samuel and Graham A. Turnbull, “Polymer Lasers: Recent Advances,” Material today, 7, pp. 28-35 (2004).
    4. P. P. Sorokin and J. R. Lankard, “Stimulated Emission Observed from an Organic Dye, Chloro-aluminum Phthalocyanine,” IBM J. Res. Develop. 10, pp. 162-163 (1966).
    5. H. Kogelnik and C. V. Shank,” Stimulated Emission in a Periodic Structure,” Appl. Phys. Lett., 18, pp. 152-154 (1971).
    6. H. Kogelnik and C. V. Shank, “Coupled-Wave Theory of Distributed Feedback Lasers,” J. Appl. Phys., 43, pp. 2327-2335 (1972).
    7. S. V. Frolov, M. Shkunov, Z. V. Vardeny, and K. Yoshino, “Ring Microlasers From Conducting Polymers,” Phys. Rev. B, 56, pp. 4363-4366 (1997).
    8. M. Imada1, A. Chutinan, S. Noda1, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B, 65, pp. 195306 (1997).
    9. S. Riechel, C. Kallinger, U. Lemmer, and J. Feldmann , “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett., 77, pp. 2310-2312 (2000).
    10. G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, D. D. C. Bradley, “Emission Characteristics and Performance Comparison of Polyfluorene Lasers with One- and Two-Dimensional Distributed Feedback,” Adv. Func. Mater., 14, pp. 91-97 (2004).
    11. William. T. Slifvast, “Laser Fundamentals 2nd ed.”, Cambridge, (2004).
    12. H. Haken and H. C. Wolf, “Molekülphysik und Quantenchemie,” Springer, Berlin, (1998).
    13. C. H. Chen, J. Shi, K. P. Klubek, US patent 5908581 (1999).
    14. K. Kobayashi, W. J. Blau, H. Tillman and H.-H. Hörhold, “Light Amplified and Lasing in a Stilbenoid Compound-Doped Glass-Clad Polymer Optical Fiber,” IEEE J. Quantum Electronics, 39, pp. 664-672 (2003).
    15. W. Lu, B. Zhong, and D. Ma, “Amplified spontaneous emission and gain from optically pumped films of dye-doped polymers,” Appl. Opt., 43, pp. 5074-5078 (2004).
    16. N. Tsutsumi, T. Kawahira, and W. Sakai, “Amplified spontaneous emission and distributed feedback lasing from a conjugated compound in various polymer matrices,” Appl. Phys. Lett., 83, pp. 253 -535 (2003).
    17. M. D. McGehee, R. Gupta, S. Veenstra, E. K. Miller, M. A. Dı´az-Garcı´a, and A. J. Heeger, “Amplified spontaneous emission from photopumped films of a conjugated polymer,” Phys. Rev. B, 58, pp 7035-7039 (1998).
    18. J. T. Verdeyen, “Laser Electronics,” Prentice Hell, USA, 234 (2000).
    19. J. Wilson, and J. Hawkes, “Optoelectronics 3rd ed.,” Prentice Hell (1998).
    20. H. Ghafouri-Shiarz and B.S.K. Lo, “Distributed Feedback Laser diodes,” Wiley, (1996).
    21. B.E.A. Saleh and M.C. Teich, “Fundamentals of photonics,” Wiley (1991).
    22. http://nano-taiwan.sinica.edu.tw/2003NanoConferences.ASP
    23. http://dot.che.gatech.edu/henderson/index.htm
    24. http://www.ndl.org.tw/

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE