簡易檢索 / 詳目顯示

研究生: 黃于璇
Huang, Yu-Hsuan
論文名稱: 利用DNA/重組腺病毒載體與H5N1血球凝集素蛋白進行heterologous prime-boost免疫法並探討其免疫反應增強的現象
Enhanced immune responses elicited by heterologous prime-boost vaccination using DNA/adenoviral vectors and protein of H5N1 hemagglutinin
指導教授: 吳夙欽
Wu, Suh-Chin
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 60
中文關鍵詞: 重組腺病毒載體重組蛋白禽流感
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    一般而言,傳統施打疫苗的方法是指進行首次疫苗注射後,再以同樣的疫苗進行
    追加注射,稱為homologous prime-boost 免疫法。但在這裡我們要介紹的heterologous prime-boost 免疫法與傳統免疫法不同的地方在於首次注射與追加劑使用的不是相同的疫苗。近來heterologous prime-boost免疫法透過臨床實驗證實能增強宿主的免疫反應並發表在HIV-1疫苗的研究文獻上,顯示這是一個值得去探討的新免疫法。
    近年來,重組腺病毒載體廣泛應用於疫苗傳遞系統並且成功的引起宿主免疫反應,包含體液免疫與細胞免疫反應,於是我們利用重組腺病毒載體表現高致病力的禽流感病毒(H5N1)表面的血球凝集素,並以其與重組血球凝集素蛋白的組合進行免疫實驗,探究老鼠身上所引發的免疫反應。除此之外,我們也使用DNA載體與DNA和重組蛋白的組合進行免疫當作控制組,觀察不同的prime-boost免疫法是否比同樣的prime-boost免疫法的效果來得好。結果顯示,利用腺病毒載體與蛋白組合的heterologous prime-boost免疫組與進行homologous prime-boost以及DNA的免疫組相比,免疫反應的確有顯著增強。所以我們認為,使用腺病毒比DNA所引起的免疫效果較好,且腺病毒與蛋白組合的免疫法比起其他組具有較強的免疫反應,顯示此種heterologous prime-boost免疫法值得進行探究,並期望能應用於未來流感疫苗的研發。


    Content 中文摘要...................................................................................................................................Ⅰ Abstract……………………………………………………………………………………….Ⅱ Acknowledgement……………………………………………………………………………Ⅲ Key words…………………………………………………………………………………….Ⅳ Figures and table list………………………………………………………………………….Ⅴ 1. Introduction…………………………………………………………………………….........1 1.1 Prime-boost immunization………………………………………………………..........1 1.1.1 Homologous prime-boost regimen……………………………………………….1 1.1.2 Heterologous prime-boost regimen………………………………………………1 1.2 Adenovirus……………………………………………………………………………..3 1.2.1 History of adenoviruses………………………………………………………….3 1.2.2 Genome characterization of adenoviruses……………………………………….3 1.3 Recombinant adenoviral vectors……………………………………………………….4 1.3.1 Overview of adenoviral vectors………………………………………………….4 1.3.2 Replicating and non-replicating recombinant adenoviral vectors………………..5 1.3.3 Recombinant adenoviral vectors for vaccine development……………………...6 1.4 Influenza A virus and recent influenza vaccine development………………………….7 1.4.1 Background of influenza A viruses………………………………………………7 1.4.2 Developmental vaccines of influenza viruses……………………………………7 1.5 Avian influenza…………………………………………………………………………9 1.5.1 History and epidemiology of avian influenza……………………………………9 1.5.2 Classification of avian influenza H5N1………………………………………...10 1.6 Goal…………………………………………………………………………………...11 2. Materials and methods……………………………………………………………………..13 2.1 Plasmids and cells………………………………………………………………….....13 2.2 Recombinant adenoviral vectors……………………………………………………...13 2.3 Construction of recombinant adenoviral vector expressing influenza HA…………...14 2.4 Construction of DNA vector expressing influenza HA………………………………15 2.5 Western blot for recombinant influenza HA protein expressing by adenoviral vector and pcDNA3.1 vector…………………………………………………………….....15 2.6 HA glycosylation pattern test…………………………………………………………16 2.7 Trypsin cleavage test……………………………………………………………….....16 2.8 Hemadsorption test…………………………………………………………………...16 2.9 Titering adenoviral stocks…………………………………………………………….17 2.10 Preparation of soluble influenza HA protein………………………………………..17 2.11 Mice immunization………………………………………………………………….18 2.12 Enzyme-linked immunoabsorbant assay (ELISA) of total IgG and isotypes……...18 2.13 Hemagglutination-inhibition (HAI) assay…………………………………………..19 2.14 Neutralization assay………………………………………………………………...19 2.15 T cell ELISPOT assay……………………………………………………………….20 3. Result………………………………………………………………………………………21 3.1 Expression and characterization of recombinant adenoviral vector-based influenza H5HA…………………………………………………………………………………21 3.2 Expression and characterization of pcDNA3.1-based influenza H5HA……………...22 3.3 Purification of recombinant HA proteins……………………………………………..23 3.4 The immune response of rAd and DNA-based vaccination………………..................24 3.4.1 The immune responses of 1st immunization with rAd-based or DNA-based influenza H5HA…………………………………………………………………24 3.4.2 The immune responses of 2nd immunization with rAd-based or DNA-based influenza H5HA…………………………………………………………………25 4. Discussion………………………………………………………………………………….28 References…………………………………………………………………………………….33 Figures………………………………………………………………………………………...38 Appendix……………………………………………………………………………………...58

    References

    Amara RR, Villinger F, Altman JD, Lydy SL, O’Neil SP, Staprans SI, Montefiori DC, Xu Y, Herndon JG, Wyatt LS et al. 2001. Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science 292:69-74.

    Aparicio, O., N. Razquin, M. Zaratiegui, I. i. Narvaiza, and P. Fortes. 2006. Adenovirus
    Virus-Associated RNA Is Processed to Functional Interfering RNAs Involved in Virus
    Production. JOURNAL OF VIROLOGY 80:1376–1384.

    Bangari, DS and Mittal, SK. 2006. Development of nonhuman adenoviruses as vaccine vectors. Vaccine 24: 849–862.

    Buchbinder SP, Mehrotra DV, Duerr A, et al. 2008. Efficacy assessment of a cell-mediated
    immunity HIV-1 vaccine (the step study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 372:1881–1893.

    Catanzaro, A. T., R. A. Koup, M. Roederer, R. T. Bailer, M. E.Enama, Z. Moodie, L.Gu,
    J. E. Martin, L. Novik, B. K. Chakrabarti, B. T. Butman, J. G. D. Gall, C. R. King,
    C. A. Andrews, R. Sheets, P. L. Gomez, J. R. Mascola, G. J. Nabel, B. S. Graham,
    and t. V. R. C. S. Team. 2006. Phase 1 Safety and Immunogenicity Evaluation of a
    Multiclade HIV-1 Candidate Vaccine Delivered by a Replication-Defective Recombinant
    Adenovirus Vector. J Infect Dis. 194:1638–1649.

    Demberg, T., R. H. Florese, M. J. Heath, K. Larsen, I. Kalisz, V. S. Kalyanaraman,
    E. M. Lee, R. Pal, D. Venzon, R. Grant, L. J. Patterson, B. Korioth-Schmitz, A.
    Buzby, D. Dombagoda, D. C. Montefiori, N. L. Letvin, A. Cafaro, B. Ensoli, and M.
    Robert-Guroff. 2007. A Replication-Competent Adenovirus-Human Immunodeficiency
    Virus (Ad-HIV) tat and Ad-HIV env Priming/Tat and Envelope Protein Boosting
    Regimen Elicits Enhanced Protective Efficacy against Simian/Human Immunodeficiency
    Virus SHIV89.6P Challenge in Rhesus Macaques. JOURNAL OF VIROLOGY
    81:3414-3427.

    Dormond, E., M. Perrier, and A. Kamen. 2009. From the first to the third generation
    adenoviral vector: What parameters are governing the production yield? Biotechnology
    Advances 27:133-144.

    Emily Rumschlag-Booms, Ying Guo, Jizhen Wang, M. Caffrey, and L. Rong. 2009.
    Comparative analysis between a low pathogenic and a high pathogenic influenza H5
    hemagglutinin in cell entry. Virology Journal 6:76.

    Ellebedy, A. H., and R. J. Webby. 2009. Influenza vaccines. Vaccine 27:D65–D68.

    Gao W, Soloff AC, Lu X, Montecalvo A, Nguyen DC, Matsuoka Y, Robbins PD, Swayne DE, Donis RO, Katz JM, Barratt-Boyes SM, Gambotto A. 2006. Protection of mice and poultry from lethal H5N1 avian influenza virus through adenovirus-based immunization. J Virol 80 : 1959-1964.

    Gómez-Román, V. R., and M. Robert-Guroff. 2003. Adenoviruses as Vectors for HIV
    Vaccines. AIDS Rev 5:178-185.

    Guo, L., H. Zhou, MinWang, J. Song, B. Han, Y. Shu, L. Ren, H. Si, J. Qu, Z. Zhao, J. Wang, and T. Hunga. 2009. A recombinant adenovirus prime-virus-like particle boost regimen elicits effective and specific immunities against norovirus in mice. Vaccine 27:5233-5238

    Hartman, Z. C., D. M. Appledorn, and A. Amalfitano. 2008. Adenovirus vector induced
    innate immune responses: Impact upon efficacy and toxicity in gene therapy and vaccine
    applications. Virus Research 132:1-14.

    Haynes, J.R., Dokken, L., Wiley, J.A., Cawthon, A.G., Bigger, J., Harmsen, A.G., Richardson C. 2009. Influenza-pseudotyped Gag virus-like particle vaccines provide
    broad protection against highly pathogenic avian influenza challenge. Vaccine
    27: 530–541.

    Hoelscher, M. A., N. Singh, S. Garg, L. Jayashankar, Vic Veguilla, A. Pandey, Y.
    Matsuoka, J. M. Katz, R. Donis, Suresh K. Mittal, and S. Sambhara. 2008. A Broadly
    Protective Vaccine against Globally Dispersed Clade 1 and Clade 2 H5N1 Influenza
    Viruses. J Infect Dis. 197:1185-1188.

    Hu SL, Klaniecki J, Dykers T, Sridhar P, Travis BM. 1991. Neutralizing antibodies against HIV-1 BRU and SF2 isolates generated in mice immunized with recombinant vaccinia virus expressing HIV-1 (BRU) envelope glycoproteins and boosted with homologous gp160. AIDS Res Hum Retroviruses 7:615-620.

    Hu SL, Abrams K, Barber GN, Moran P, Zarling JM, Langlois AJ, Kuller L, Morton WR, Benveniste RE. 1992. Protection of macaques against SIV infection by subunit vaccines of SIV envelope glycoprotein gp160. Science 255:456-459.

    Imler, J.-L. 1995. Adenovirus vectors as recombinant viral vaccines. Vaccine 13:1143-1151.

    J. H. C. M. Kreijtz, Y. Suezer, G. de Mutsert, J. M. A. van den Brand, G. van
    Amerongen, B. S. Schnierle, T. Kuiken, R. A. M. Fouchier, J. Löwer,
    A. D. M. E. Osterhaus, G. Sutter, and G. F. Rimmelzwaan. 2009. Recombinant
    Modified Vaccinia Virus Ankara Expressing the Hemagglutinin Gene Confers
    Protection against Homologous and Heterologous H5N1 Influenza Virus Infections in
    Macaques. The Journal of Infectious Diseases 199.

    Kim, J. H., and J. Jacob. 2009. DNA Vaccines Against Influenza Viruses. Current Topics in
    Microbiology and Immunology 333.

    Khanam, S., P. Rajendra, N. Khanna, and S. Swaminathan. 2007. An adenovirus
    prime/plasmid boost strategy for induction of equipotent immune responses to two
    dengue virus serotypes. BMC Biotechnology 7.

    Lasaro, M. O., and H. C. Ertl. 2009. New Insights on Adenovirus as Vaccine Vectors.
    Molecular Therapy 17.

    Li Xing and Suresh K Tikoo. 2009. Packaging of viral RNAs in virions of adenoviruses. Virol J. 6: 16.

    Li, B.-W., A. Rush, S. R. Zhang, K. C. Curtis, and G. J. Weil. 2004. Antibody responses to
    Brugia malayi antigens induced by DNA vaccination. Filaria Journal 3.

    Lu, S. 2009. Heterologous prime–boost vaccination. Current Opinion in Immunology
    21:346-351.

    Magalhaes I, Sizemore DR, Ahmed RK, Mueller S, Wehlin L, et al. 2008. rBCG Induces Strong Antigen-Specific T Cell Responses in Rhesus Macaques in a Prime-Boost Setting with an Adenovirus 35 Tuberculosis Vaccine Vector. PLoS ONE 3(11): e3790

    McHardy, A. C., and B. Adams. 2009. The Role of Genomics in Tracking the Evolution of
    Influenza A Virus. PLoS Pathogens 5.

    Morris, S. J., and K. N. Leppard. 2009. Adenovirus serotype 5 L4-22K and L4-33K
    proteins have distinct functions in regulating late gene expression. J. Virol.

    Price GE, Soboleski MR, Lo CY, Misplon JA, Pappas C, Houser KV, Tumpey TM, Epstein SL. 2009. Vaccination focusing immunity on conserved antigens protects mice and ferrets against virulent H1N1 and H5N1 influenza A viruses. Vaccine 27: 6512–6521

    Rowe WP, Huebner RJ, Gilmore LK, Parrott RH, Ward TG. 1953. Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc Soc Exp Biol Med 84(3):570–3.

    Russell W. C. 2000. Update on adenovirus and its vectors. J Gen Virol. 81:2573–2604.

    Russell W. C. 2009. Adenoviruses: update on structure and function. Journal of General
    Virology 90:1-20.

    Schenk TE. 2001. Adenoviridae the viruses and their replication. In: Knipe DM, Howley PM, editors. Fundamental Virology. Lippincott Williams & Wilkins ed. p. 979-1016.

    Schepp-Berglind, J., M. Luo, D. Wang, J. A. Wicker, N. U. Raja, B. D. Hoel, D. H.
    Holman, A. D. T. Barrett, and J. Y. Dong. 2007. Complex Adenovirus-Mediated
    Expression of West Nile Virus C, PreM, E, and NS1 Proteins Induces both Humoral and
    Cellular Immune Responses. Clinical and vaccine immunology 14: 1117–1126.

    Shiver JW, Fu TM, Chen L, Casimiro DR, Davies ME, Evans RK, Zhang ZQ, Simon AJ, Trigona WL, Dubey SA et al. 2002. Replication-incompetent adenoviral vaccine vector elicits effective antiimmunodeficiency-virus immunity. Nature 415:331-335.

    Shi Z, Zeng M, Yang G, et al. 2001. Protection against tetanus by needle-free inoculation of
    adenovirus vectored nasal and epicutaneous vaccines. J. Virol 75:11474–11482.

    Shott, J. P., Shannon M. McGratha, Maria Grazia Paub, Jerome H.V. Custersb, Olga
    Ophorst , M.-A. Demoitie´, M.-C. Dubois, J. Komisar, M. Cobba, Kent E. Kestera,
    Patrice Duboisc, J. Cohenc, Jaap Goudsmitb, D. Gray Heppnera, and V. A. S. 2008.
    Adenovirus 5 and 35 vectors expressing Plasmodium falciparum circumsporozoite
    surface protein elicit potent antigen-specific cellular IFN-_ and antibody responses in
    mice. Vaccine 26:2818-2823.

    Supachai Rerks-Ngarm, M. D. Punnee Pitisuttithum, M. D. Sorachai Nitayaphan, Ph.D.,
    P. D. Jaranit Kaewkungwal, M. D. Joseph Chiu, M. D. Robert Paris, M. D. Nakorn
    Premsri, M. D. Chawetsan Namwat, P. D. Mark de Souza, M. D. Elizabeth Adams,
    M. D. Michael Benenson, M. D. Sanjay Gurunathan, P. D. Jim Tartaglia, M. D.
    John G. McNeil, M. D. Donald P. Francis, P. D. Donald Stablein, M. D. Deborah L.
    Birx, M. D. Supamit Chunsuttiwat, M. D. Chirasak Khamboonruang, M. D. Prasert
    Thongcharoen, Ph.D.,, M. D. Merlin L. Robb, M. D. Nelson L. Michael, Ph.D., , M.
    D. Prayura Kunasol, and M. D. Jerome H. Kim. 2009. Vaccination with ALVAC and
    AIDSVAX to Prevent HIV-1 Infection in Thailand. The new england journal of
    medicine 361.

    Tatsis, N and Ertl, HC. 2004. Adenoviruses as vaccine vectors. Mol Ther 10: 616–629.

    Tang, D.-c. C., J. Zhang, H. Toro, Z. Shi, and K. R. V. Kampen. 2009. Adenovirus as a
    carrier for the development of influenza virus-free avian influenza vaccines. Expert Rev Vaccines 8:469-481.

    Uyeki, TM. 2008. Global epidemiology of human infections with highly pathogenic avian influenza A (H5N1) viruses. Respirology 13:s1, S2-S9.

    Uhl EW, Harvey SB, Michel F, Perozo Y, Gabbard J, Tompkins SM, Hogan RJ. 2010. Immunogenicity of avian H5N1 influenza virus recombinant vaccines in cats. Viral Immunology 23:221-6.

    Vaine M, Wang S, Crooks ET, Jiang P, Montefiori DC, Binley J, Lu S. 2008. Improved induction of antibodies against key neutralizing epitopes by human immunodeficiency virus type 1 gp120 DNA prime-protein boost vaccination compared to gp120 protein-only vaccination. J Virol 82:7369-7378.

    Wang S, Pal R, Mascola JR, Chou TH, Mboudjeka I, Shen S, Liu Q, Whitney S, Keen T, Nair BC et al. 2006. Polyvalent HIV-1 Env vaccine formulations delivered by the DNA priming plus protein boosting approach are effective in generating neutralizing antibodies against primary human immunodeficiency virus type 1 isolates from subtypes A, B, C, D and E. Virology 350:34-47.

    Wang S, Parker C, Taaffe J, Solorzano A, Garcia-Sastre A, Lu S. 2008. Heterologous HA DNA vaccine prime—inactivated influenza vaccine boost is more effective than using DNA or inactivated vaccine alone in eliciting antibody responses against H1 or H3 serotype influenza viruses. Vaccine 26:3626-3633.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE