簡易檢索 / 詳目顯示

研究生: 吳偉銓
Wu, Wei-Chuan
論文名稱: 應用奈米滾壓技術於可撓性基板製作大面積奈米結構之研究
A Study of Replicating Large-Area Nanostructures on Flexible Substrate by Using Roller-Type NIL Process
指導教授: 宋震國
Sung, Cheng-Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 83
中文關鍵詞: 熱壓翻模紫外光滾壓回彈現象薄膜厚度
外文關鍵詞: Hot-embossing, Roller-type UV-NIL, Spring-back phenomenon, Film thickness
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在瞭解滾壓實驗中製程參數對其結構成型性的影響,研究範圍從熱壓翻模製備滾筒模具到進行紫外光奈米滾壓實驗。在熱壓翻模製備滾筒模具方面,本文利用SEM與FIB觀察ETFE軟模的表面形貌與成型高度,且用AFM觀察大面積ETFE軟模各個區域的成型均勻性,瞭解ETFE軟模在齒底的部分因為第一時間受到矽模具齒頂的接觸造成應力集中產生回彈現象,使得ETFE的成型高度較矽模具小;另外ETFE高分子的大小約30 nm,因此在奈米壓印成型的結果中表面易有曲折的樣貌;並且ETFE具有略疏水的材料性質,但以EDS分析顯示ETFE仍然有些許沾黏於矽模具上。此外,ETFE熱壓翻模製程在以機械力為壓力源的方式下,預壓壓力與抽真空的時序對於ETFE軟模成型的繞射區域有明顯的影響。
    接著以ETFE軟模做為滾筒模具進行紫外光奈米滾壓實驗,透過各項實驗結果可以得到以下結論:在定張力、變速度的情況下,即代表以相同的壓印壓力對光阻以不同的壓印時間進行壓印,造成光阻的薄膜厚度在較快的速度下因為得到較少的壓印時間而有較厚的薄膜厚度;反之在變張力、定速度的情況下,即以不同的壓印壓力在相同的壓印時間下對光阻做壓印,因此在越大的張力下而使薄膜厚度較 薄;另外在較高速度的情況下除了使光阻薄膜厚度較厚之外,也讓光阻得到較少的紫外光能量,因此造成結構的表面形貌具有較多的缺陷產生;在較高張力的情況下則因為PET與ETFE軟膜之間較為密合且光阻薄膜厚度較薄吸收較少的紫外光能量即可固化的影響下,可以得到較佳的成型結果,從本文可以瞭解滾壓實驗從軟模製作到紫外光滾壓製程中材料與參數對成型結果的影響以供未來製程發展。


    中文摘要 I 英文摘要 III 誌謝 VI 目錄 VI 圖目錄 X 表目錄 XII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 7 1-2-1 熱壓製程參數對成型性的影響 8 1-2-2 熱壓回彈現象 8 1-2-3 含氟物質抗沾黏效果 9 1-2-4 紫外光固化奈米滾壓製程 11 1-2-5 滾壓製程影響因子 13 1-3 研究目的與本文內容 14 第二章 基礎理論 16 2-1 滾筒表面受力分析理論 17 2-2 紫外光硬化型高分子組成機制 19 2-3 紫外光硬化型高分子類型 20 2-3-1 壓克力型紫外光硬化高分子 21 2-3-2 環氧樹脂型紫外光硬化高分子 21 2-3-3 壓克力型與環氧樹脂型高分子之比較 22 2-4 硬化反應機制 23 2-4-1 架橋反應 23 2-4-2 壓克力型高分子反應過程 24 2-4-3 環氧樹脂型高分子反應過程 26 2-5 高分子硬化影響因素 27 2-5-1 起始劑吸收光譜 27 2-5-2 硬化曝光劑量 28 2-5-3 光源照射強度 28 2-5-4 光阻厚度 29 2-5-5 熱的影響 30 2-5-6 製程變因 30 2-6 紫外光製程安全問題 31 第三章 實驗儀器介紹與實驗準備 33 3-1 實驗設備介紹 33 3-2 模具製程 38 3-3 壓印實驗參數 40 3-4 實驗分析與量測項目 42 3-4-1 熱壓翻模實驗前後分析與量測 42 3-4-2 紫外光奈米滾壓實驗前後量測 43 3-5 實驗流程 44 第四章 實驗結果與討論 46 4-1 熱壓翻模實驗結果 46 4-1-1 軟模表面能量測 47 4-1-2 模具實驗前量測 48 4-1-3 預壓壓力與真空時序影響 50 4-1-4 大面積熱壓翻模結果 52 4-1-5 熱壓翻模回彈現象 54 4-1-6 翻模材料沾黏矽模具現象 57 4-2 紫外光滾壓實驗結果 58 4-2-1 紫外光平面壓印實驗 58 4-2-2 紫外光奈米滾壓實驗參數設計 61 4-2-3 滾壓製程參數對殘留層厚度之影響 63 4-2-4 速度對紫外光奈米滾壓實驗之影響 69 4-2-5 張力對紫外光奈米滾壓實驗之影響 72 4-2-6 光阻沾黏ETFE軟模現象 74 第五章 結論與未來展望 76 5-1 結論 76 5-2 未來展望 78 參考文獻 81

    [1] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, 1995, “Imprint of sub-25 nm vias and trenches in polymers,”Applied Physics Letters, Vol. 67, No. 20, p. 3114-3116
    [2] Hua Tan, Andrew Gilbertson, Stephen Y. Chou, 1998, “Roller nanoimprint lithography,” J. Vac. Sci. Technol. Vol. 16, No. 6, p. 3926-3928
    [3] Stephen Y. Chou, Chris Keimel, Jian Gu, 2002, “Ultrafast and direct imprint of nanostructures in silicon,” Nature, Vol. 417, No. 20, p. 835-837
    [4] Jan Haisma, Martin Verheijen, Kees van den Heuvel, Jan van den Berg, 1996,“Mold-assisted nanolithography: A process for reliable pattern replication,”J.Vac. Sci. Technol. Vol. 14, No. 6, p. 4124-4128
    [5] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S.V. Sreenivasan, J. Ekerdt, C. G. Willson, 1999, “Step and Flash Imprint Lithography: A new approach to high resolution patterning,” Emerging Lithographic Technologies, Vol. 3676, p. 379-389
    [6] Amit Kumar, George M. Whitesides, 1993, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching,” Applied Physics Letters, Vol. 63, No. 14, p. 2002-2004
    [7] J.-H. Chang, S.-Y. Yang, 2003, “Gas pressurized hot embossing for transcription of micro-features,” Microsystem Technologies, Vol. 10, No. 1, p. 76-80
    [8] Hong-Wen Sun, Jing-Quan Liu, Di Chen, Pan Gu, 2005, “Optimization and experimentation of nanoimprint lithography based on FIB fabricated stamp,” Microelectronic Engineering, Vol. 82, Issue 2, p. 175-179
    [9] Yong He, Jian-Zhong Fu and Zi-Chen Chen, 2007, “Research on optimization of the hot embossing process,” Micromechanics and Microengineering, Vol. 17, No. 12, p. 2420-2425
    [10] Nils Roos, Matthias Wissen, Thomas Glinsner, Hella-C. Scheer, 2003, “Impact of vacuum environment on the hot embossing process,” Emerging Lithographic Technologies, Vol. 5037, p. 211-218
    [11] Ji-Hoon Kang, Kwang-Seop Kim and Kyung-Woong Kim, 2007, “Molecular dynamics study of pattern transfer in nanoimprint lithography,” Tribology Letters, Vol. 25, No. 2, p. 93-102
    [12] Yoshihiko Hirai, Satoshi Yoshida, Akio Okamoto, Yoshio Tanaka, Masataka Endo Sigeo Irie, Hideo Nakagawa, Masaru Sasago, 2001, “Mold Surface Treatment for Imprint Lithography,”Photopolymer Science and Technology, Vol. 14, No. 3, p. 457-462
    [13] D. Truffier-Boutry, R. Galand, A. Beaurain, A. Francone, B. Pelissier, M. Zelsmann, J. Boussey, 2009, “Mold cleaning and fluorinated anti-sticking treatments in nanoimprint lithography,” Microelectronic Engineering, Volume 86, Issues 4-6, p. 669-672
    [14] Dahl-Young Khang, Hong H. Lee, 2004, “Sub-100 nm Patterning with an Amorphous Fluoropolymer Mold,” American Chemical Society, Vol. 20, No. 6, p. 2445-2448
    [15] Yasuhide Kawaguchi, Fumiko Nonaka, Yasuhiro Sanada, 2007, “Fluorinated materials for UV nanoimprint lithography,” Microelectronic Engineering, Vol. 84, issue 5-8, p. 973-976
    [16] David R. Barbero, Mohammad S. M. Saifullah, Patrik Hoffmann, Hans Jörg Mathieu,David Anderson, Geraint A. C. Jones, Mark E. Welland, and Ullrich Steiner, 2007, “High Resolution Nanoimprinting with a Robust and Reusable Polymer Mold,” Advanced functional Material, Vol.17, No. 14, p. 2419-2425
    [17] Se Hyun Ahn, Jin-Sung Kim, L. Jay Guo, 2007, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate,” J. Vac. Sci. Technol. Vol.25, No. 6, p. 2388-2391
    [18] Se Hyun Ahn, L. Jay Guo, 2009, “High-speed Roll-to-Roll Nanoimprint Lithography on Flexible Substrate and Mold-separation Analysis,” Advanced Fabrication Technologies for Micro/Nano Optics and Photonics, Vol. 7205, p. 72050U-1~72050U-10
    [19] H. Hashimoto, 2007, “Prediction model of paper-web wrinkling and some numerical calculation examples with experimental verifications,” Microsystem Technology, Vol. 13, Issue 8-10, p. 933-941
    [20] Kee-Hyun Shin, Soon-Oh Kwon, 2007, “The Effect of Tension on the Lateral Dynamics and Control of a Moving Web,” IEEE, VOL. 43, NO. 2, p.403-411
    [21] ROYMECH, 2009/04/23. http://www.roymech.co.uk/Useful_Tables/Drive/Band_Brakes.html
    [22] Robert C. Juvinall, Kurt M. Marshek,1991, “Fundamentals of Machine Component Design,” p. 696-698
    [23] 游恩華, 2005, “紫外線成型技術與探討,” 國立東華大學材料科學與工程學研究所碩士論文
    [24] 張豐志, 2003, “應用高分子手冊,” 五南圖書, p.57-72
    [25] 陳延昌, 2001, “紫外光原型件成型技術精敏化之研究,” 國立臺灣師範大學工業教育研究所碩士論文
    [26] J.V.Crivello, 1979, ”Epoxy Resin Chemistry,” ACS Symposium Series, Vol. 114
    [27] 楊呈勳, 2004, “在UV 製程中如何硬化完全硬化,” 第三屆量宏UV 論壇
    [28] 程家維, 2000, http://life.nthu.edu.tw/~labcjw/BioPhyChem/Spectroscopy/beerslaw.htm
    [29] 楊智翔, 2008, “創新之雷射干涉微影系統與大面積奈米壓印模具之製作,” 國立清華大學動力機械系碩士論文
    [30] Heon LEE, Gun-Young JUNG, 2004,”UV Curing Nanoimprint Lithography for Uniform Layers and Minimized Residual Layers,” Japanese Journal of Applied Physics, Vol. 43, No. 12, p. 8369-8373
    [31] Xiangdong Ye, Yucheng Ding, Yugang Duan, Hongzhong Liu and Bingheng Lu, 2009, “Effects of exposure time on defects and demolding force in soft ultraviolet nanoimprint lithography,” Journal of Vacuum Science & Technology, Vol. 27, p. 2091-2096
    [32] Se Hyun Ahn and L. Jay Guo, 2009, “Large Area Roll to Roll and Roll to Plate Nanoimprint Lithography:A Step toward High-Throughput Application of Continuous Nanoimprinting,” ACS Nano, Vol. 3, No.8, p. 2304-2310
    [33] H. Schmitt, L. Frey, H. Ryssel, M. Rommel and C. Lehrer, 2007, “UV nanoimprint materials Surface energies, residual layers, and imprint quality,” Journal of Vacuum Science and Technology, Vol. 25, No. 3, p. 785-790

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE