簡易檢索 / 詳目顯示

研究生: 陳信良
Chen, Sin-Liang
論文名稱: 可低溫燒結陶瓷與銅共燒之燒結曲率與應力分析
Camber and Stress Development during Cofiring a Low-Fire Dielectric with Cu System
指導教授: 簡朝和
口試委員: 許志雄
吳志明
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 37
中文關鍵詞: 卑金屬低溫共燒曲率燒結應力
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討陶瓷系統(Ca,Sr)ZrO3和卑金屬(銅)所製備的試片,於共燒時產生的曲率(Camber)和應力(Stress)發展,先由計算方式算出適合銅燒結的還原氣氛,利用同步拍照的方式觀察陶瓷體和銅在還原氣氛下的收縮差異及共燒試片的曲率變化,並以熱機械分析儀器量測陶瓷體的單軸向黏度(Uniaxial viscosity),銅的單軸向黏度是透過熱力學計算得到,將線性收縮率差值和曲率變化代入黏彈性模型(visco-elastic model),兩種方法皆可計算出不匹配應力,且再將銅的兩種擴散機制代入算出不匹配應力。不匹配應力在銅或陶瓷體收縮的過程時皆小於燒結驅動力,故雙層疊壓試片在共燒下可達高度緻密,共燒後的試片亦未發現任何破裂或脫層等共燒缺陷。


    目 錄 目錄...............................................................................................................i 圖目錄.........................................................................................................iii 1. 簡介.........................................................................................................1 2. 實驗方法.................................................................................................3 2.1 原料.................................................................................................3 2.2 基本性質測試.................................................................................3 2.2.1 漿料製備..............................................................................3 2.2.2 試片製備..............................................................................3 2.2.3 脫脂燒結..............................................................................4 2.2.4 電性量測..............................................................................4 2.3 刮刀製程.........................................................................................5 2.4 還原氣氛.........................................................................................5 2.5 收縮量量測.....................................................................................5 2.6 曲率觀察.........................................................................................6 2.7 單軸向黏度量測.............................................................................6 2.7.1 陶瓷體的單軸向黏度量測..................................................6 2.7.2 銅的單軸向黏度量測..........................................................7 2.8 微結構觀察.....................................................................................7 3. 結果與討論.............................................................................................8 3.1 氧分壓之熱力學計算.....................................................................8 3.1.1 氧分壓計算..........................................................................8 3.1.2 氫氣壓與水蒸氣壓控制氧分壓計算.................................9 3.2 銅與陶瓷體的收縮行為.................................................................9 3.3 曲率的發展...................................................................................11 3.4 單軸向黏度...................................................................................13 3.4.1 陶瓷體的單軸向黏度量測................................................13 3.4.2 銅的單軸向黏度計算........................................................14 3.5 不匹配應力...................................................................................16 3.6 燒結驅動力...................................................................................18 3.7 顯微結構觀察...............................................................................20 4. 結論.......................................................................................................21 5. 參考文獻...............................................................................................22 圖 目 錄 圖一 銅、碳與氧分壓之間的熱力學關係圖..........................................25 圖二 利用固定水蒸氣壓和氫氣壓所計算出來之熱力學關係圖........26 圖三 銅和陶瓷體之線性應變量隨溫度變化的關係............................27 圖四 銅和陶瓷體之線性應變率隨溫度變化的關係............................28 圖五 銅和陶瓷體之線性應變率差值隨溫度變化的關係....................29 圖六 銅/陶瓷體非對稱雙層試片,在燒結過程中由同步照相所得之影 像(A) 900 ℃, (B) 950 ℃, (C) 1000 ℃ 0min, (D) 1000 ℃ 10min, (E)1000 ℃ 20min, (F) 1000 ℃ 120min......................................30 圖七 銅/陶瓷體雙層疊壓試片於不同升溫速率時,曲率隨溫度變化的 關係................................................................................................31 圖八 銅/陶瓷體雙層疊壓試片於不同升溫速率時,曲率變化隨溫度變 化的關係........................................................................................32 圖九 以升溫速率5℃/min量測陶瓷體之單軸向黏度值隨溫度變化的 關係................................................................................................33 圖十 銅的單軸向黏度計算值隨溫度變化的關係................................34 圖十一 銅/陶瓷體雙層疊壓試片於燒結時所產生之不匹配應力與溫 度之關係(A)由TMA量測之線性應變率差值計算而得,(B) 由曲率變化計算而得................................................................35 圖十二 銅/陶瓷體雙層疊壓試片於燒結時所計算之燒結驅動力與溫 度之關係....................................................................................36 圖十三 燒結完成之銅/陶瓷體雙層疊壓試片界面處於電子顯微鏡下 觀測結果,並同時觀測各元素分佈之情形.............................37

    [1]Y. T. Shih, J. H. Jean and S. C. Lin,“Failure Mechanism of a Low- Temperature-Cofired Ceramic Capacitor with an Inner Ag Electrode,” J. Am. Ceram. Soc., 93 [10] 3278-3283 (2010).
    [2]J. H. Jean and C. R. Chang, “Camber development during cofiring Ag-based low-dielectric-constant ceramic package” J. Mater. Res., 12 [10], 2743-2750 (1997).
    [3]J. H. Jean, C. R. Chang and Z. C. Chen, “Effect of Densification Mismatch on Camber Development during Cofiring of Nickel-Based Multilayer Ceramic Capacitors” J. Am. Ceram. Soc., 80 [9], 2401-2406 (1997).
    [4]J. C. Chang and J. H. Jean, “Camber Development During the Co-firing of Bi-Layer Glass-Based Dielectric Laminate” J. Am. Ceram. Soc., 88 [5], 1165–1170 (2005).
    [5]R. T. Hsu and J. H. Jean, “Key Factors Controlling Camber Behavior During the Cofiring of Bi-Layer Ceramic Dielectric Laminates” J. Am. Ceram. Soc., 88 [9], 2429–2434 (2005).
    [6]G. P. Gaskell, Introduction to Metallurgical Thermodynamics, 2nd ed.:pp.585-90. McGraw-Hill, New York, 1981.
    [7]B. W. Hakki, and P. D. Coleman,“A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range,”IRE Transactions on Microwave Theory and Techniques, MTT-8, 402-10(1960)
    [8]R. K. Bordia and G.W. Scherer, ‘‘On Constrained Sintering-I. Constitutive Models for a Sintering Body,’’ Acta Metall., 36 [9] 2393–97 (1988).
    [9]R. K. Bordia and G.W. Scherer, ‘‘On Constrained Sintering-II. Comparison of Constitutive Models,’’ Acta Metall., 36 [9] 2399–409 (1988).
    [10]P. Z. Cai, D. J. Green, and G. L. Messing, “Constrained Densification of Alumina/Zirconia Hybrid Laminates, I: Experimental Observations of Processing Defects” J. Am. Ceram. Soc., 80 [8], 1929-1939 (1997).
    [11]P. Z. Cai, D. J. Green, and G. L Messing, “Constrained Densification of Alumina/Zirconia Hybrid Laminates, II: Viscoelastic Stress Computation” J. Am. Ceram. Soc., 80 [8], 1940-1948 (1997).
    [12]S. Ho, C. Hillman, F. F. Lange, and Z. Suo, “Surface Cracking in Layers Under Biaxial, Residual Compressive Stress” J. Am. Ceram. Soc., 78 [9], 2353-2359 (1995).
    [13]T. Cheng and R. Raj, “Flaw Generation During Constrained Sintering of Metal-Ceramic and Metal–Glass Multilayer Films” J. Am. Ceram. Soc., 72 [9], 1649-1655 (1989).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE