研究生: |
李詩苗 Li, Shih-Miao |
---|---|
論文名稱: |
CISD2在肺腺癌中調控ROS恆定現象並且影響腫瘤形成以及不良的臨床預後 CISD2 regulates ROS homeostasis and contributes to tumorigenesis and poor prognosis of lung adenocarcinoma |
指導教授: |
熊昭
Hsiung, Chao 江士昇 Jiang, Shih-Sheng |
口試委員: |
王陸海
Wang, Lu-Hai 張憶壽 Chang, I-Shou 張壯榮 Chang, Chuang-Rung |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 79 |
中文關鍵詞: | 肺癌 、肺腺癌 、CISD2 、EGR1 、活性氧物種 、細胞凋亡 、細胞侵犯 |
外文關鍵詞: | Lung cancer, Lung adenocarcinoma, CISD2, EGR1, Reactive oxygen species, Apoptosis, Cell invasion |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肺癌是全世界不論男女因癌症致死的的第一名,其中主要的原因是因為肺癌病人往往在診斷出肺癌時已是晚期以及缺乏有效的肺癌治療方式。CISD2在發育生長學中扮演了重要的角色,最常被連結到遺傳疾病(Wolfram 症候群)以及老化的研究。然而CISD2這幾年來在癌症中被廣泛的報導認為是一個致癌基因,包括了乳癌、食道癌、子宮頸癌、咽喉癌以及胃癌等。它在癌症中被認為扮演和癌細胞內的調節氧化壓力平衡以及抑制細胞自噬的角色,而且文獻指出,CISD2的表現量也和病人的預後有關。然而,CISD2在肺癌中扮演的角色仍不清楚也尚未被討論。
我們利用公開之基因表現資料庫及病人檢體的免疫組織染色分析,結果發現,CISD2在肺癌組織的表現量明顯高於周遭正常肺組織。我們也發現,CISD2的mRNA表現量和病人腫瘤的臨床分期和預後有關。在細胞株實驗中,改變CISD2的表現量會影響肺癌細胞的存活、細胞週期、細胞凋亡、細胞侵犯以及粒線體功能。在機轉研究方面,我們發現CISD2的表現量和數個氧化壓力反應基因有負向調控關係,這些基因包括了EGR1與GPX3;而更重要地,上述負向調控關係,也與臨床檢體觀察的結果一致。綜合以上,我們認為CISD2在肺癌生成過程,扮演一個抗氧化基因的角色,可能藉由調控CISD2-ROS-EGR1/GPX3的路徑,進而調控細胞內過高的氧化壓力,以行使其致癌基因功能。藉由標定CISD2達到抑制癌細胞的存活功能可以應用為肺癌病人的治療策略。
Lung cancer is the leading cause of death in cancer in both men and women worldwide. The high mortality of lung cancer mostly can be attributed to diagnosis in late stage and insufficient cancer treatment solutions. CISD2 is a redox-sensitive gene critical for normal development and mitochondrial integrity. CISD2 was known to have aberrant expression in several types of human cancers. However, its relationship with lung cancer is still not clear. In this study, we found CISD2 mRNA was significantly upregulated in lung adenocarcinoma (ADC) samples, compared with their adjacent normal counterparts, and was correlated with tumor stage, grade, and prognosis based on analysis of clinical specimens-derived expression data in public domain and our validation assay. Cell based assay indicated that CISD2 expression regulated accumulation of reactive oxygen species (ROS), polarization of mitochondrial membrane potential, as well as cell viability, apoptosis, invasiveness, and tumorigenicity. In addition, CISD2 expression was found significantly correlated with stress response/redox signaling genes such as EGR1 and GPX3, while such correlations were also found valid in many public domain data. Taken together, upregulation of CISD2 is involved in an increased antioxidant capacity in response to elevated ROS levels during the formation and progression of lung ADC. The molecular mechanism underlying how CISD2 regulates ROS homeostasis and augments malignancy of lung cancer warrants further investigations, and targeting CISD2 is also worthy to be developed as a new strategy to treat lung cancer.
1. Sengupta, N., M. Sahidullah, and G. Saha, Lung sound classification using cepstral-based statistical features. Comput Biol Med, 2016. 75: p. 118-129.
2. Molina, J.R., et al., Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc, 2008. 83(5): p. 584-594.
3. 103年癌症登記年報. 2014, 衛生福利部國民健康署.
4. Pope III, C.A., et al., Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama, 2002. 287(9): p. 1132-1141.
5. Besaratinia, A. and G.P. Pfeifer, Second-hand smoke and human lung cancer. Lancet Oncol, 2008. 9(7): p. 657-666.
6. Lan, Q., et al., Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia. Nat Genet, 2012. 44(12): p. 1330-1335.
7. Miki, D., et al., Variation in TP63 is associated with lung adenocarcinoma susceptibility in Japanese and Korean populations. Nat Genet, 2010. 42(10): p. 893-896.
8. Hsiung, C.A., et al., The 5p15. 33 locus is associated with risk of lung adenocarcinoma in never-smoking females in Asia. PLoS genetics, 2010. 6(8): p. e1001051.
9. Jemal, A., et al., Cancer statistics, 2008. CA Cancer J Clin, 2008. 58(2): p. 71-96.
10. Herbst, R.S., J.V. Heymach, and S.M. Lippman, Lung cancer. N Engl J Med, 2008. 359(13): p. 1367-1380.
11. Breathnach, O.S., et al., Twenty-two years of phase III trials for patients with advanced non-small-cell lung cancer: sobering results. J Clin Oncol, 2001. 19(6): p. 1734-1742.
12. Paez, J.G., et al., EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 2004. 304(5676): p. 1497-1500.
13. Chen, Z., et al., Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer, 2014. 14(8): p. 535-546.
14. Swanton, C. and R. Govindan, Clinical Implications of Genomic Discoveries in Lung Cancer. N Engl J Med, 2016. 374(19): p. 1864-1873.
15. Rudin, C.M., et al., Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet, 2012. 44(10): p. 1111-1116.
16. Jackman, D.M. and B.E. Johnson, Small-cell lung cancer. Lancet, 2005. 366(9494): p. 1385-1396.
17. Downward, J., RAS Synthetic Lethal Screens Revisited: Still Seeking the Elusive Prize? Clin Cancer Res, 2015. 21(8): p. 1802-1809.
18. Govindan, R., et al., Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell, 2012. 150(6): p. 1121-1134.
19. Kandoth, C., et al., Mutational landscape and significance across 12 major cancer types. Nature, 2013. 502(7471): p. 333.
20. Howard, D.J., et al., Environmental tobacco smoke in the workplace induces oxidative stress in employees, including increased production of 8-hydroxy-2'-deoxyguanosine. Cancer Epidemiology and Prevention Biomarkers, 1998. 7(2): p. 141-146.
21. Talhout, R., et al., Hazardous compounds in tobacco smoke. Int J Environ Res Public Health, 2011. 8(2): p. 613-628.
22. Waris, G. and H. Ahsan, Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog, 2006. 5: p. 14.
23. Conner, G.E., M. Salathe, and R. Forteza, Lactoperoxidase and hydrogen peroxide metabolism in the airway. Am J Respir Crit Care Med, 2002. 166(12 Pt 2): p. S57-61.
24. Schieber, M. and N.S. Chandel, ROS function in redox signaling and oxidative stress. Curr Biol, 2014. 24(10): p. R453-462.
25. Rada, B. and T.L. Leto, Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contrib Microbiol, 2008. 15: p. 164-187.
26. Holmstrom, K.M. and T. Finkel, Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol, 2014. 15(6): p. 411-421.
27. Brooker, R.J., Genetics : Analysis and Principles 4th. 4th ed. 2011: McGraw-Hill Higher Education.
28. Sullivan, L.B., D.Y. Gui, and M.G.V. Heiden, Altered metabolite levels in cancer: implications for tumour biology and cancer therapy. Nat Rev Cancer, 2016. 16(11): p. 680-693.
29. Mitsuishi, Y., H. Motohashi, and M. Yamamoto, The Keap1-Nrf2 system in cancers: stress response and anabolic metabolism. Front Oncol, 2012. 2: p. 200.
30. Valko, M., et al., Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact, 2006. 160(1): p. 1-40.
31. Cairns, R.A., I.S. Harris, and T.W. Mak, Regulation of cancer cell metabolism. Nat Rev Cancer, 2011. 11(2): p. 85-95.
32. Circu, M.L. and T.Y. Aw, Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med, 2010. 48(6): p. 749-762.
33. Sabharwal, S.S. and P.T. Schumacker, Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel? Nat Rev Cancer, 2014. 14(11): p. 709-721.
34. Wallace, D.C., Mitochondria and cancer. Nat Rev Cancer, 2012. 12(10): p. 685-698.
35. Duchen, M.R., Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med, 2004. 25(4): p. 365-451.
36. Cadenas, E. and K.J. Davies, Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med, 2000. 29(3-4): p. 222-230.
37. Zong, W.X., J.D. Rabinowitz, and E. White, Mitochondria and Cancer. Mol Cell, 2016. 61(5): p. 667-676.
38. Chen, Y.-F., et al., Cisd2 mediates mitochondrial integrity and life span in mammals. Autophagy, 2009. 5(7): p. 1043-1045.
39. Chen, Y.F., et al., A role for the CISD2 gene in lifespan control and human disease. Ann N Y Acad Sci, 2010. 1201: p. 58-64.
40. Conlan, A.R., et al., Crystal structure of Miner1: The redox-active 2Fe-2S protein causative in Wolfram Syndrome 2. J Mol Biol, 2009. 392(1): p. 143-153.
41. Tamir, S., et al., Structure-function analysis of NEET proteins uncovers their role as key regulators of iron and ROS homeostasis in health and disease. Biochim Biophys Acta, 2015. 1853(6): p. 1294-1315.
42. Chen, Y.F., et al., Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice. Genes Dev, 2009. 23(10): p. 1183-1194.
43. Chang, N.C., et al., Antagonism of Beclin 1-dependent autophagy by BCL-2 at the endoplasmic reticulum requires NAF-1. Embo j, 2010. 29(3): p. 606-618.
44. Tamir, S., et al., Integrated strategy reveals the protein interface between cancer targets Bcl-2 and NAF-1. Proc Natl Acad Sci U S A, 2014. 111(14): p. 5177-5182.
45. Chang, N.C., et al., Bcl-2-associated autophagy regulator Naf-1 required for maintenance of skeletal muscle. Hum Mol Genet, 2012. 21(10): p. 2277-2287.
46. Holt, S.H., et al., Activation of apoptosis in NAF-1-deficient human epithelial breast cancer cells. J Cell Sci, 2016. 129(1): p. 155-165.
47. Sohn, Y.S., et al., NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth. Proc Natl Acad Sci U S A, 2013. 110(36): p. 14676-14681.
48. Liu, L., et al., CISD2 expression is a novel marker correlating with pelvic lymph node metastasis and prognosis in patients with early-stage cervical cancer. Med Oncol, 2014. 31(9): p. 183.
49. Wang, L., et al., Overexpressed CISD2 has prognostic value in human gastric cancer and promotes gastric cancer cell proliferation and tumorigenesis via AKT signaling pathway. Oncotarget, 2015.
50. Yang, L., et al., A novel prognostic score model incorporating CDGSH Iron Sulfur Domain2 (CISD2) predicts risk of disease progression in laryngeal squamous cell carcinoma. Oncotarget, 2016.
51. Chen, B., et al., CISD2 associated with proliferation indicates negative prognosis in patients with hepatocellular carcinoma. Int J Clin Exp Pathol, 2015. 8(10): p. 13725-13738.
52. Shen, Z.-Q., Effect of Cisd2 Haploinsufficiency on Hepatic Steatosis and Carcinogenesis in Mice. Master Thesis, 2011.
53. Paddock, M.L., et al., MitoNEET is a uniquely folded 2Fe 2S outer mitochondrial membrane protein stabilized by pioglitazone. Proc Natl Acad Sci U S A, 2007. 104(36): p. 14342-14347.
54. Darash-Yahana, M., et al., Breast cancer tumorigenicity is dependent on high expression levels of NAF-1 and the lability of its Fe-S clusters. Proc Natl Acad Sci U S A, 2016.
55. Okayama, H., et al., Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res, 2012. 72(1): p. 100-111.
56. Wei, T.Y., et al., Protein arginine methyltransferase 5 is a potential oncoprotein that upregulates G1 cyclins/cyclin-dependent kinases and the phosphoinositide 3-kinase/AKT signaling cascade. Cancer Sci, 2012. 103(9): p. 1640-1650.
57. Hou, J., et al., Gene expression-based classification of non-small cell lung carcinomas and survival prediction. PLoS One, 2010. 5(4): p. e10312.
58. Lee, E.S., et al., Prediction of recurrence-free survival in postoperative non-small cell lung cancer patients by using an integrated model of clinical information and gene expression. Clin Cancer Res, 2008. 14(22): p. 7397-7404.
59. Ding, L., et al., Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 2008. 455(7216): p. 1069-1075.
60. Selamat, S.A., et al., Genome-scale analysis of DNA methylation in lung adenocarcinoma and integration with mRNA expression. Genome Res, 2012. 22(7): p. 1197-1211.
61. Landi, M.T., et al., Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival. PLoS One, 2008. 3(2): p. e1651.
62. Stearman, R.S., et al., Analysis of orthologous gene expression between human pulmonary adenocarcinoma and a carcinogen-induced murine model. Am J Pathol, 2005. 167(6): p. 1763-1775.
63. Su, L.J., et al., Selection of DDX5 as a novel internal control for Q-RT-PCR from microarray data using a block bootstrap re-sampling scheme. BMC Genomics, 2007. 8: p. 140.
64. Beer, D.G., et al., Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med, 2002. 8(8): p. 816-824.
65. Bild, A.H., et al., Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature, 2006. 439(7074): p. 353-357.
66. Chang, I.S., et al., Genetic Modifiers of Progression-Free Survival in Never-Smoking Lung Adenocarcinoma Patients Treated with First-Line Tyrosine Kinase Inhibitors. Am J Respir Crit Care Med, 2017. 195(5): p. 663-673.
67. Subramanian, A., et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A, 2005. 102(43): p. 15545-15550.
68. Jiang, S.S., et al., Upregulation of SOX9 in lung adenocarcinoma and its involvement in the regulation of cell growth and tumorigenicity. Clin Cancer Res, 2010. 16(17): p. 4363-4373.
69. Liu, S.C., et al., G(alpha)12-mediated pathway promotes invasiveness of nasopharyngeal carcinoma by modulating actin cytoskeleton reorganization. Cancer Res, 2009. 69(15): p. 6122-6130.
70. Zhang, H., et al., EGR1 decreases the malignancy of human non-small cell lung carcinoma by regulating KRT18 expression. Sci Rep, 2014. 4: p. 5416.
71. Baron, V., et al., The transcription factor Egr1 is a direct regulator of multiple tumor suppressors including TGFbeta1, PTEN, p53, and fibronectin. Cancer Gene Ther, 2006. 13(2): p. 115-124.
72. Virolle, T., et al., The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling. Nat Cell Biol, 2001. 3(12): p. 1124-1128.
73. Solis, L.M., et al., Nrf2 and Keap1 abnormalities in non-small cell lung carcinoma and association with clinicopathologic features. Clin Cancer Res, 2010. 16(14): p. 3743-3753.
74. Lill, R., Function and biogenesis of iron-sulphur proteins. Nature, 2009. 460(7257): p. 831-838.
75. Colca, J.R., et al., Identification of a novel mitochondrial protein ("mitoNEET") cross-linked specifically by a thiazolidinedione photoprobe. Am J Physiol Endocrinol Metab, 2004. 286(2): p. E252-260.
76. Wiley, S.E., et al., MitoNEET is an iron-containing outer mitochondrial membrane protein that regulates oxidative capacity. Proc Natl Acad Sci U S A, 2007. 104(13): p. 5318-5323.
77. Amr, S., et al., A homozygous mutation in a novel zinc-finger protein, ERIS, is responsible for Wolfram syndrome 2. Am J Hum Genet, 2007. 81(4): p. 673-683.
78. Gorrini, C., I.S. Harris, and T.W. Mak, Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov, 2013. 12(12): p. 931-947.
79. Kim, S.J., et al., Shikonin induces cell cycle arrest in human gastric cancer (AGS) by early growth response 1 (Egr1)-mediated p21 gene expression. J Ethnopharmacol, 2014. 151(3): p. 1064-1071.
80. Liu, J., et al., Concurrent down-regulation of Egr-1 and gelsolin in the majority of human breast cancer cells. Cancer Genomics Proteomics, 2007. 4(6): p. 377-385.
81. Shin, D.Y., et al., Implication of intracellular ROS formation, caspase-3 activation and Egr-1 induction in platycodon D-induced apoptosis of U937 human leukemia cells. Biomed Pharmacother, 2009. 63(2): p. 86-94.
82. Ragione, F.D., et al., p21Cip1 gene expression is modulated by Egr1: a novel regulatory mechanism involved in the resveratrol antiproliferative effect. J Biol Chem, 2003. 278(26): p. 23360-23368.
83. Han, M.H., et al., Sanguinarine induces apoptosis in human colorectal cancer HCT-116 cells through ROS-mediated Egr-1 activation and mitochondrial dysfunction. Toxicol Lett, 2013. 220(2): p. 157-166.
84. Ferraro, B., et al., EGR1 predicts PTEN and survival in patients with non-small-cell lung cancer. J Clin Oncol, 2005. 23(9): p. 1921-1926.
85. Shan, L.N., et al., Early Growth Response Protein-1 Involves in Transforming Growth factor-beta1 Induced Epithelial-Mesenchymal Transition and Inhibits Migration of Non-Small-Cell Lung Cancer Cells. Asian Pac J Cancer Prev, 2015. 16(9): p. 4137-4142.
86. Sarver, A.L., L. Li, and S. Subramanian, MicroRNA miR-183 functions as an oncogene by targeting the transcription factor EGR1 and promoting tumor cell migration. Cancer Res, 2010. 70(23): p. 9570-9580.
87. Wang, H., et al., PRL-3 down-regulates PTEN expression and signals through PI3K to promote epithelial-mesenchymal transition. Cancer Res, 2007. 67(7): p. 2922-2926.
88. Abazeed, M.E., et al., Integrative radiogenomic profiling of squamous cell lung cancer. Cancer Res, 2013. 73(20): p. 6289-6298.
89. Tao, S., et al., Oncogenic KRAS confers chemoresistance by upregulating NRF2. Cancer Res, 2014. 74(24): p. 7430-7441.