研究生: |
蔡豐印 |
---|---|
論文名稱: |
氟摻雜氧化錫奈米線的製備及單根奈米線電性研究 The Study of Synthesis of Fluorine-doped Tin Oxide Nanowires and the Electrical Property of a Single Fluorine-doped Tin Oxide Nanowire |
指導教授: |
開執中
陳福榮 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 氟 、氧化錫 、奈米線 |
外文關鍵詞: | Fluorine, Tin Oxide, Nanowire |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
透明導電氧化物(transparent conductive oxides, TCOs),例如氧化錫(SnO2)、氧化銦(In2O3)、氧化鎘(CdO)和氧化鋅(ZnO)在近幾十年來在光電材料應用的重要性越來越顯著。為了增加這些材料的導電性,我們通常會摻雜入適當的元素來增加其導電載子濃度進而提昇材料的導電度。
在透明導電氧化物的範疇中,氧化銦錫(tin-doped indium oxide, ITO)最常被研究與工業上的應用。然而,氧化銦錫材料暴露在有氧的高溫(>300℃)環境中,其導電度會因為材料中的氧空缺的減少而大幅度的下降。氟摻雜氧化錫(fluorine-doped tin oxide, FTO)比氧化銦錫有更佳的熱穩定性,且在材料價錢上更具有競爭力,因此,氟摻雜氧化錫材料是做為取代氧化銦錫材料的最佳選擇。
隨著元件的尺寸越來越小,透明導電氧化物奈米材料的發展極具有潛力,並且,目前為止並沒有任何單晶氟摻雜氧化錫奈米線的研究。本實驗率先利用熱蒸鍍法成長氧化錫奈米線和氟摻雜氧化錫奈米線,接著使用各種分析儀器TEM、SEM、XRD、EDS量測合成之奈米線的定性和定量分析。之後使用TEM-STM電性量測系統分別測量單根氧化錫奈米線和氟摻雜氧化錫奈米線的電性並討論之。
我們可以確定合成的氧化錫奈米線和氟摻雜氧化錫奈米線皆為成長方向[100]的單晶。此外,從TEM-STM系統量測到單根氟摻雜氧化錫奈米線的電阻率確實遠小於單根氧化錫奈米線,氟的摻雜的確對此材料的電性有顯著的影響。
Transparent conductive oxides (TCO) ,such as SnO2, In2O3, CdO, and ZnO, have become increasingly important in a large variety of applications due to demands for optically-transparent, conductive materials.[1-2] To enhance the conductivity, we usually dope suitable atoms introduce more free carriers.[3] It has been widely used as electric leads in optoelectronic devices such as flat panel displays and thin film solar energy cells.
A common TCO used in research and industry is tin-doped indium oxide (ITO). However, ITO experiences a reduction of electrical conductivity when exposed to oxygen at elevated temperatures (> 300 ℃). Therefore, FTO, which is much more thermally stable, is often used as an alternative to ITO. As device size continues to decrease, the potential use of nanoscaled structures of these TCOs grows. However, very little to no work has been published regarding the fabrication of FTO nanowires.[4]
The authors report the growth of F-doped SnO2 single crystalline nanowires by carrying out the thermal evaporation of solid Sn and SnF2 powders a in an Ar/O2 ambient gas. We analyzed the samples with scanning electron microscopy, X-ray diffraction, transmission electron microscopy. From the EDS spectra, we can quantify fluorine-doping in the nanowires is about 2 at%. The electrical properties of rutile-type F-doped SnO2 low-dimensional structures were analysed using a scanning tunnelling microscopy (STM) in situ holder for transmission electron microscopes (TEM).The measured I-V curve obtained typically show Ohmic-like behavior between the gold electrode and F-doped SnO2 nanowires. And the resistivity of FTO NWs is 0.0278Ω-cm, much smaller than pure SnO2 NWs(289 Ω-cm).
參考文獻
[1] T. Fukano, T. Motohiro, Sol. Energ. Mater. Sol. Cells 82, 567 (2004)
[2] N.R. Lynam, in Proceedings of the Symposium on Electrochromic Materials, vol. 90–92, ed. by M.K. Carpenter, D.A. Corrigan. (The Electrochemical Society, Pennington, 1990), p. 201
[3] Q. Qiao, J. Beck, R. Lumpkin, J. Pretko, J.T. Mcleskey Jr., Sol. Energ. Mater. Sol. Cells 90, 1034 (2006)
[4] A.N. Banerjee, S. Kundoo, P. Saha, K.K. Chattopadhyay, J. Sol-Gel Sci. Technol. 28, 105 (2003)
[5] M. H. Hang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, Advanced Materials, 13, 113 (2001)
[6] C. Liang, G. Meng, Y. Lei, F. Phillipp, and L. Zhang, Advanced Materials, 13, 1330 (2001)
[7] Jin Jeong, Seong-Pyung Choi, Cha Ik Chang, Dong Chan Shin, Jin Sung Park, B-T Lee, Yeong-Jun Park and Ho-Jun Song, Solid State Communications 127, 595–597, (2003)
[8] H. Kim and A. Pique, Appl. Phys. Lett. 84, 218 _2004
[9] E. Shanthi, V. Dutta, A. Banerjee, and K. L. Kopra, J. Appl. Phys. 51, 6243 (1980).
[10] T. Maruyama and K. Tabata, J. Appl. Phys. 68, 4282 (1990)
[11] A. E. Rakhshani, Y. Makdisi, and H. A. Ramazaniyan, J. Appl. Phys. 83, 1049 (1998)
[12] S. W. Lee, Y. W. Kim, and H. Chen, Appl. Phys. Lett. 78, 350 (2001)
[13] G. M. Dalpian and J. R. Chelikowsky, Phys. Rev. Lett. 96, 226802 (2006)
[14]Q. Wan and T. H. Wang, Chem. Commun. (Cambridge) 2005, 3841
[15] Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, Adv. Mater. (Weinheim, Ger.) 15, 1754 (2003)
[16]D. L. Wang and C. M. Lieber, Nat. Mater. 2, 355 (2003)
[17] Dai Z. R., Pan Z. W., Wang Z. L., SOLID STATE COMMUNICATIONS, 118, 351-354 (2001)
[18] Dai Z. R., Gole J. L., Stout J. D., Wang Z. L., JOURNAL OF PHYSICAL CHEMISTRY B , 16, 1274-1279 (2002)
[19] S. Kumar et al. / Electrochimica Acta 51 (2005) 943–951
[20] Jin Huang, Aixia Lu, Bin Zhao, and Qing Wan, APPLIED PHYSICS LETTERS 91, 073102 (2007)
[21] E. Elangovan, K. Ramamurthi, Applied Surface Science 249 (2005) 183-196
[22] K. S. SHAMALA and L. C. S. MURTHY, K. NARASIMHA RAO, Surface Review and Letter, Vol. 13, No. 4 (2006) 357-364
[23]B. RUSSO, G. Z. CAO, Applied Physics A 90, 311-315 (2008)
[24] Hideaki Ohnishi, Yukihito Kondo, and Kunio Takayanagi, Letters to Nature, 395, 780 (1998)
[25] A. Bachtold, M. Henny, C. Terrier, C. Strunk, and C. Schonenberher, J.-P. Salvetat, J.-M. Bonard, and L. Forro, Applied Physics Letters, 73, 274 (1998)
[26] J.-F. Lin, J. P. Bird, L. Rotkina, and P. A. Bennett, Applied Physics Letters, 82, 802 (2003)
[27] M. E. Toimil Molares, E. M. Hohberger, Ch. Schaeflein, R. H. Blick, R. Neumann and C. Trautmann, Applied Physics Letters, 82, 2139 (2003)
[28] R Lin, M Bammerlin, OHansen, R R Schlittler, and P Boggild, Nanotechnology, 15, 1363 (2004)
[29] Yunze Long, Zhaojia Chen, Wenlong Wang, Fenglian Bai, Aizi Jin and Changzhi Gu, Applied Physics Letters, 86, 153102-1 (2005)
[30]John C. H. Spence, Ultramicroscopy, 25, 165 (1988)
[31] Tokushi Kizuka, Kanji Yamada, Shunji Deguchi, Mikio Naruse, and Nobuo Tanaka, Physical Review B, 55, R7398 (1997)
[32] D. Erts, A. Lohmus, R. Lohmus, H. Olin, Applied Physics A, S71 (2001)
[33] D. Erts, H. Olin, L. Ryen, E. Olsson, and A. Tholen, Physics Review B, 61, 127251 (2000)
[34]G. Wexler, Proc. Phys. Soc. London, 89, 927 (1966)
[35] D. Erts, J. D. Holmes, D. Lyon, M. A. Morris, H. Olin, E. Olsson, and B. Plyakov, “Properties of Silicon Nonawires Studied by TEM-STM”, (2002) The Forth Nordic-Baltic Workshop
[36] Magnus W. Larsson, L. Reine Wallenberg, Ann I. Persson, and Lars Samuelson, Microscopy and Microanalysis, 10, 41 (2004)
[37] Z. Y. Zhang, X. L. Liang, C. H. Jin, Q. Chen, and L.-M. Peng, Applied Physics Letters, 88, 073102 (2006)
[38]汪建民, “材料分析”, (1998) 中國材料科學學會
[39] 胡晟民, “低溫成長氧化銦奈米線及摻雜錫後之電性量測”, (2003) 清華大學
[40] D. Calestani, M. Zha, G. Salviati, L. Lazzarini, L. Zanotti, E. Comini, G. Sberveglieri, Journal of Crystal Growth 275 (2005) 2083-2087
[41] Peidong Yang, Haoquan Yan, Samual Mao, Richard Russo, Justin Johnson, Richard Saykally, Nathan Morris, Johnny Pham, Rongrui He and Heon-Jin Choi, Advanced Functional Materials, 12, 323 (2002)
[42] Joint Committee on Powder Diffraction Standards (JCPDS), Card no. 21-1250
[43] 莊惠芳,”氧化銦錫奈米線的製備及單根奈米線電性研究”, (2006)清華大學
[44] M. S. Park, G. X. Wang, Y. M. Kang, David Wexler, S. X. Dou, and H. K. Liu, Angew. Chem. Int. Ed. 2007, 46, 750-753
[45] Elhouichet H, Moadhen A, Oueslati M, Romhdane S, Roger J R and Bouchriha H 2005 Phys. Status Solidi 9 3349
[46]R. Holm, “Electric Contact”, Springer-Verlag (1967)
[47] I. Ekvll, E. Wahlstrom, D. Claesson, H. Olin, and E. Olsson, MEas Sci. Technol, 10, 11 (1999)
[48] T. Shimizu, A. Ando, H. Abe, Y. Nakayama, and H. Tokumoto, In Processdings of nano-7/ecoss-21, Sweden (2002)
[49] Jeong-O Lee, Park, Ju-Jin Kim, Jinhee Kim, Long Wan Park, and Kyung-Hwa Yoo, J. Phys, D: Appl. Phys., 33, 1953 (2000)
[50]T. Kizuka, Physical Review Letter, 81, 4448 (1998)
[51] Mike Gedeon, “The Important of Contact Force”, vol. 1 (1999) Tchnical Tidbits
[52] E. Shanthi, A. Banerjee, V. Dutta, and K. L. Chopra, J. Appl. Phys. 53, 1615 (1982)
[53] J. W. Bae, S. W. Lee, and G. Y. Yeom, Journal of Electrochemical Society, 154 (1) D34-D37 (2007)
[54] C. Geoffroy, G. Campet, F. Menil, J. Portier, J. Salardenne and G. Couturier, Active and Passive Elec. Comp., 1991, Vol. 14, 111-118
[55]G.R.A. Kumara, S. Kaneko, A. Konno, M. Okuya, K. Murakami, B. Onwona-Agyeman, K. Tennakone, Prog. Photovoltaics Res. Appl. 14, 643 (2006)
[56]S.J. Limmer, S.V. Cruz, G.Z. Cao, Appl. Phys. A 49, 421 (2004)
[57]科儀叢書3, 材料電子顯微鏡學, 國科會精儀中心
[58]http://nhml.com/i/resources_NHML_Scanning-Electron-Microscopes_fig1_lg.gif
[59] http://en.wikipedia.org/wiki/Image:Rutile-unit-cell-3D-balls.png
[60] Francisco Hern′andez-Ram′ırez1, Albert Taranc′on1, Olga Casals1, Jordi Rodr′ıguez1, Albert Romano-Rodr′ıguez1, Joan R Morante1, Sven Barth2, Sanjay Mathur2,5, Tae Y Choi3, Dimos Poulikakos3, Victor Callegari4 and Philipp M Nellen4, Nanotechnology 17 (2006) 5577–5583
[61]J. Yamashita, H. Hirayama, Y. Ohshima, K. Takayanagi, Applied Physics Letters, 74, 2450 (1999)