簡易檢索 / 詳目顯示

研究生: 董筱玲
Tung, Shiao-Lin
論文名稱: 微型核醣核酸34c-5p藉由反向調控AREG-EGFR-ERK路徑可以抑制amphiregulin誘發之卵巢癌幹細胞特性及抗藥性
miRNA-34c-5p inhibits amphiregulin-induced ovarian cancer stemness and drug resistance via downregulation of the AREG-EGFR-ERK pathway
指導教授: 王陸海
Wang, Lu-Hai
口試委員: 邱英明
Chiu, Ing-Ming
顏伶汝
Yen, B. Linju
李佳霖
Lee, Jia-Lin
周裕珽
Chou, Yu-Ting
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 87
中文關鍵詞: 微型核醣核酸34c-5pamphiregulin類卵巢癌幹細胞癌症幹細胞特性抗藥性AREG-EGFR-ERK路徑
外文關鍵詞: miR-34c-5p, amphiregulin, ovarian cancer stem-like cells, cancer stemness, drug resistance, AREG-EGFR-ERK pathway
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 卵巢癌是婦科癌症中最致命的癌症,主要致命原因是因為晚期診斷、容易擴散、以及快速產生抗藥性。癌症幹細胞被認為是產生抗藥性、疾病轉移及復發的重要原因之一。為了探討卵巢癌幹細胞的特性,我們從兩株卵巢癌細胞株SKOV-I6及OVS1成功的培養出類卵巢癌幹細胞。其中OVS1細胞株是直接從卵巢癌病人身上取得的腫瘤培養而成。這些類卵巢癌幹細胞具有重要的癌症幹細胞特性,包括球體形成、自我更新的能力、表現重要的卵巢癌幹細胞標記及表皮間質轉換標記、對藥物的抗藥性增加、以及強力的致瘤性能力。
    以基因微陣列分析發現從OVS1細胞株衍生的球形細胞和OVS1原型細胞相較,amphiregulin (AREG) 的表現量上升,而AREG之保守調控的微型核醣核酸34c-5p 的表現量則是下降。以定量即時聚合酶鏈鎖反應分析也證實在兩株細胞株的球形細胞中,AREG的表現量增加以及微型核醣核酸34c-5p的表現量下降。報導基因冷光活性試驗及其突變體分析證實AREG 是微型核醣核酸34c-5p的直接標的基因。實驗分析也發現,AREG調控的球體形成增加、對docetaxel及carboplatin兩種化學治療藥物的抗藥性增加、以及致瘤性能力的增加可以被微型核醣核酸34c-5p所抑制。我們更進一步發現微型核醣核酸34c-5p是透過反向抑制AREG-EGFR-ERK路徑來抑制這些卵巢癌幹細胞特性及抗藥性。實驗也發現AREG的過度表現和卵巢癌病人的晚期分期及不良預後相關。
    綜合而論,我們的研究指出AREG藉由AREG-EGFR-ERK路徑來促進卵巢癌幹細胞特性及抗藥性,而微型核醣核酸34c-5p則可反向抑制此路徑。因此藉著抑制AREG,微型核醣核酸34c-5p可以在卵巢癌的抗癌症幹細胞治療中成為非常有潛力的治療策略。


    Epithelial ovarian cancer is the most lethal gynecological cancer mainly due to late diagnosis,easy spreading, and rapid development of chemoresistance. Cancer stem cells are considered to be one of the main mechanisms for chemoresistance, as well as metastasis and recurrent disease. To explore the stemness characteristics of ovarian cancer stem cells, we successfully enriched ovarian cancer stem-like cells from an established ovarian cancer cell line (SKOV-I6) and a fresh ovarian tumor derived cell line (OVS1). These ovarian cancer stem-like cells possess important cancer stemness characteristics including sphere-forming and self-renewing abilities, expressing important ovarian cancer stem cell and epithelial-mesenchymal transition markers, as well as increased drug resistance and potent tumorigenicity. Microarray analysis of OVS1-derived sphere cells revealed increased expression of amphiregulin (AREG) and decreased expression of its conserved regulatory microRNA, miR-34c-5p, when compared with the OVS1 parental cells. Overexpression of AREG and decreased miR-34c-5p expression in SKOV-I6 and OVS1 sphere cells were confirmed by quantitative real-time polymerase chain reaction analysis. Luciferase reporter assay and mutant analysis confirmed that AREG is a direct target of miR-34c-5p. Furthermore, AREG-mediated increase of sphere formation, drug resistance toward docetaxel and carboplatin, as well as tumorigenicity of SKOV-I6 and OVS1 cells could be abrogated by miR-34c-5p. We further demonstrated that miR-34c-5p inhibited ovarian cancer stemness and drug resistance through downregulation of the AREG-EGFR-ERK pathway. Overexpression of AREG was found to be correlated with advanced ovarian cancer stages and poor prognosis. Taken together, our data suggest that AREG promotes ovarian cancer stemness and drug resistance via the AREG-EGFR-ERK pathway and this is inhibited
    by miR-34c-5p. Targeting AREG, miR-34c-5p could be a potential strategy for anti-cancer stem cell therapy in ovarian cancer.

    TABLE OF CONTENTS Page ABSTRACT (CHINESE) i ABSTRACT (ENGLISH) iii ACKNOWLEDGMENTS v TABLE OF CONTENTS viii LIST OF TABLES AND FIGURES xii LIST OF ABBREVIATIONS xvi CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Amphiregulin (AREG) and human cancers 1 1.2.1 Introduction of AREG 1 1.2.2 AREG is one of the ligands of the epidermal growth factor receptor (EGFR) 2 1.2.3 The role of AREG in human cancers 3 1.3 miRNAs and human cancers 4 1.3.1 The role of miRNAs in human cancers 4 1.3.2 The role of miR-34 family in human cancers 5 CHAPTER 2 MATERIALS AND METHODS 7 2.1 Cell lines, cell culture, sphere culture, and tumor samples 7 2.2 Total RNA isolation and qRT-PCR 8 2.3 Western blotting analysis 9 2.4 Immunofluorescence staining and confocal microscope image analysis 9 2.5 Cell proliferation assay 10 2.6 Transfection assay 10 2.7 Experimental animals and tumorigenicity test 11 2.8 Microarray analysis 12 2.9 Plasmids construction and 3’UTR luciferase reporter assays 12 2.10 Immunohistochemistry 13 2.11 Public datasets 13 2.12 Flow cytometry 13 2.13 Statistical analysis 14 2.14 Tables 15 CHAPTER 3 ESTABLISH A NEW CELL LINE AND SUCCESSFULLY ENRICH OVARIAN CANCER STEM-LIKE CELLS 18 3.1 Rationale 18 3.2 Results 19 3.2.1 Establish a new cell line from the clinical fresh ovarian adenocarcinoma specimen 19 3.2.2 Successful enrichment of ovarian cancer stem-like cells from both SKOV-I6 and OVS1 lines 19 3.2.3 Ovarian cancer stem-like cells possess important ovarian cancer stem cell and epithelial–mesenchymal transition (EMT) markers 20 3.2.4 Ovarian cancer stem-like cells are more chemoresistant 21 3.2.5 Ovarian cancer stem-like cells retain potent tumorigenicity 22 3.3 Discussion 22 3.4 Figures 25 CHAPTER 4 THE ROLES OF AREG AND MIR-34C-5P IN OVARIAN CANCER STEM-LIKE CELLS 38 4.1 Rationale 38 4.2 Results 39 4.2.1 Upregulated AREG and downregulated miR-34c-5p expression were observed in SKOV-I6 and OVS1 sphere cells 39 4.2.2 AREG is a direct target of miR-34c-5p 41 4.2.3 AREG promotes SKOV-I6 and OVS1 sphere formation, tumorigenicity, and drug resistance, which are inhibited by miR-34c-5p 42 4.2.4 miR-34c-5p inhibits ovarian cancer stemness and drug resistance through downregulation of the AREG-EGFR-ERK pathway 43 4.2.5 The expression of AREG in ovarian cancer patients correlates with advanced clinical stages and poor clinical outcomes 44 4.3 Discussion 45 4.4 Tables 49 4.5 Figures 53 CHAPTER 5 CONCLUSIONS AND FUTURE PERSPECTIVE 71 5.1 Conclusions 71 5.2 Future perspective 71 5.2.1 Combined conventional chemotherapy with anti-cancer stem cell specific therapy could be a faster and promising strategy 71 5.2.2 miRNAs-based anti-cancer therapies warrant further study 72 REFERENCES 75

    Abba, M.L., Patil, N., Leupold, J.H., Moniuszko, M., Utikal, J., Niklinski, J., and Allgayer, H. (2016). MicroRNAs as novel targets and tools in cancer therapy. Cancer Lett, e-pub ahead of print 1 April 2016; doi: http://dx.doi.org/2010.1016/j.canlet.2016.2003.2043.

    Abubaker, K., Latifi, A., Luwor, R., Nazaretian, S., Zhu, H., Quinn, M.A., Thompson, E.W., Findlay, J.K., and Ahmed, N. (2013). Short-term single treatment of chemotherapy results in the enrichment of ovarian cancer stem cell-like cells leading to an increased tumor burden. Mol Cancer 12, 24.

    Acloque, H., Adams, M.S., Fishwick, K., Bronner-Fraser, M., and Nieto, M.A. (2009). Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 119, 1438-1449.

    Ahmed, N., Abubaker, K., Findlay, J., and Quinn, M. (2013). Cancerous ovarian stem cells: obscure targets for therapy but relevant to chemoresistance. J Cell Biochem 114, 21-34.

    Avraham, R., and Yarden, Y. (2011). Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat Rev Mol Cell Biol 12, 104-117.

    Bader, A. (2012). miR-34 – a microRNA replacement therapy is headed to the clinic. Front Genet 3, 120.

    Berasain, C., and Avila, M.A. (2014). Amphiregulin. Semin Cell Dev Biol 28, 31-41.

    Bimonte, S., Leongito, M., Barbieri, A., del Vecchio, V., Falco, M., Giudice, A., Palaia, R., Albino, V., Di Giacomo, R., Petrillo, A., et al. (2016). The therapeutic targets of miRNA in hepatic cancer stem cells. Stem Cells Int 2016, 1065230.

    Booth, B.W., Boulanger, C.A., Anderson, L.H., Jimenez-Rojo, L., Brisken, C., and Smith, G.H. (2010). Amphiregulin mediates self-renewal in an immortal mammary epithelial cell line with stem cell characteristics. Exp Cell Res 316, 422-432.

    Bostwick, D.G., Qian, J., and Maihle, N.J. (2004). Amphiregulin expression in prostatic intraepithelial neoplasia and adenocarcinoma: A study of 93 cases. The Prostate 58, 164-168.

    Brennecke, J., Stark, A., Russell, R.B., and Cohen, S.M. (2005). Principles of microRNA–target recognition. PLoS Biol 3, e85.

    Bu, P., Chen, K.-Y., Chen, J.H., Wang, L., Walters, J., Shin, Y.J., Goerger, J.P., Sun, J., Witherspoon, M., Rakhilin, N., et al. (2013). A microRNA miR-34a regulated bimodal switch targets Notch in colon cancer stem cells. Cell Stem Cell 12, 602-615.

    Burger , R.A., Brady , M.F., Bookman , M.A., Fleming , G.F., Monk , B.J., Huang , H., Mannel , R.S., Homesley , H.D., Fowler , J., Greer , B.E., et al. (2011). Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med 365, 2473-2483.

    Burgos-Ojeda, D., Rueda, B.R., and Buckanovich, R.J. (2012). Ovarian cancer stem cell markers: prognostic and therapeutic implications. Cancer Lett 322, 1-7.

    Busser, B., Sancey, L., Brambilla, E., Coll, J.-L., and Hurbin, A. (2011). The multiple roles of amphiregulin in human cancer. Biochim Biophys Acta 1816, 119-131.

    Cai, K.M., Bao, X.L., Kong, X.H., Jinag, W., Mao, M.R., Chu, J.S., Huang, Y.J., and Zhao, X.J. (2010). Hsa-miR-34c suppresses growth and invasion of human laryngeal carcinoma cells via targeting c-Met. Int J Mol Med 25, 565-571.

    Cao, L., Zhou, Y., Zhai, B., Liao, J., Xu, W., Zhang, R., Li, J., Zhang, Y., Chen, L., Qian, H., et al. (2011). Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines. BMC Gastroenteol 11, 1-11.

    Carvalho, S., Lindzen, M., Lauriola, M., Shirazi, N., Sinha, S., Abdul-Hai, A., Levanon, K., Korach, J., Barshack, I., Cohen, Y., et al. (2016). An antibody to amphiregulin, an abundant growth factor in patients' fluids, inhibits ovarian tumors. Oncogene 35, 438-447.

    Castillo, J., Erroba, E., Perugorría, M.J., Santamaría, M., Lee, D.C., Prieto, J., Avila, M.A., and Berasain, C. (2006a). Amphiregulin Contributes to the Transformed Phenotype of Human Hepatocellular Carcinoma Cells. Cancer Res 66, 6129.

    Castillo, J., Erroba, E., Perugorría, M.J., Santamaría, M., Lee, D.C., Prieto, J., Avila, M.A., and Berasain, C. (2006b). Amphiregulin contributes to the transformed phenotype of human hepatocellular carcinoma cells. Cancer Res 66, 6129-6138.

    Chang, C., Liu, T., Huang, Y., Qin, W., Yang, H., and Chen, J. (2017). MicroRNA-134-3p is a novel potential inhibitor of human ovarian cancer stem cells by targeting RAB27A. Gene 605, 99-107.

    Chen, D., Zhang, Y., Wang, J., Chen, J., Yang, C., Cai, K., Wang, X., Shi, F., and Dou, J. (2013a). MicroRNA-200c overexpression inhibits tumorigenicity and metastasis of CD117(+)CD44(+) ovarian cancer stem cells by regulating epithelial-mesenchymal transition. J Ovarian Res 6, 50.

    Chen, X., Zhang, J., Zhang, Z., Li, H., Cheng, W., and Liu, J. (2013b). Cancer stem cells, epithelial-mesenchymal transition, and drug resistance in high-grade ovarian serous carcinoma. Human Pathol 44, 2373-2384.

    Chen, Y., Rao, Q., Zhang, H., Xu, H., Zhang, C., Zhuang, Q., and Ye, Z. (2016). miR-34C disrupts the stemness of purified CD133+ prostatic cancer stem cells. Urology 96, 177.e171-177.e179.

    Cheng, W., Liu, T., Wan, X., Gao, Y., and Wang, H. (2012). MicroRNA-199a targets CD44 to suppress the tumorigenicity and multidrug resistance of ovarian cancer-initiating cells. FEBS J 279, 2047-2059.

    Cho, W.C.S. (2010). MicroRNAs in cancer — from research to therapy. Biochim Biophys Acta 1805, 209-217.

    Ciarloni, L., Mallepell, S., and Brisken, C. (2007). Amphiregulin is an essential mediator of estrogen receptor α function in mammary gland development. Proc Natl Acad Sci USA 104, 5455-5460.

    Clarke, M.F., Dick, J.E., Dirks, P.B., Eaves, C.J., Jamieson, C.H.M., Jones, D.L., Visvader, J., Weissman, I.L., and Wahl, G.M. (2006). Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66, 9339-9344.

    Conic, I., Dimov, I., Tasic-Dimov, D., Djordjevic, B., and Stefanovic, V. (2011). Ovarian epithelial cancer stem cells. ScientificWorldJournal 11, 1243-1269.

    Dean, M., Fojo, T., and Bates, S. (2005). Tumour stem cells and drug resistance. Nat Rev Cancer 5, 275-284.

    Ebner, O.A., and Selbach, M. (2014). Quantitative proteomic analysis of gene regulation by miR-34a and miR-34c. PLoS ONE 9, e92166.

    Eckstein, N., Servan, K., Girard, L., Cai, D., von Jonquieres, G., Jaehde, U., Kassack, M.U., Gazdar, A.F., Minna, J.D., and Royer, H.-D. (2008). Epidermal growth factor receptor pathway analysis identifies amphiregulin as a key factor for cisplatin resistance of human breast cancer cells. J Biol Chem 283, 739-750.

    Ffrench, B., Gasch, C., O’Leary, J.J., and Gallagher, M.F. (2014). Developing ovarian cancer stem cell models: laying the pipeline from discovery to clinical intervention. Mol Cancer 13, 262.

    Fontanini, G., De Laurentiis, M., Vignati, S., Chinè, S., Lucchi, M., Silvestri, V., Mussi, A., De Placido, S., Tortora, G., Bianco, A.R., et al. (1998). Evaluation of epidermal growth factor-related growth factors and receptors and of neoangiogenesis in completely resected stage I-IIIA non-small-cell lung cancer: amphiregulin and microvessel count are independent prognostic indicators of survival. Clin Cancer Res 4, 241.

    Foster, R., Buckanovich, R.J., and Rueda, B.R. (2013). Ovarian cancer stem cells: working towards the root of stemness. Cancer Lett 338, 147-157.

    Fritz, H.K., Gustafsson, A., Ljungberg, B., Ceder, Y., Axelson, H., and Dahlback, B. (2015). The Axl-regulating tumor suppressor miR-34a is increased in ccRCC but does not correlate with Axl mRNA or Axl protein levels. PLoS ONE 10, e0135991.

    Gao, M.Q., Choi, Y.P., Kang, S., Youn, J.H., and Cho, N.H. (2010). CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene 29, 2672-2680.

    Garson, K., and Vanderhyden, B.C. (2015). Epithelial ovarian cancer stem cells: underlying complexity of a simple paradigm. Reproduction 149, R59-70.

    Gordon, A.N., Fleagle, J.T., Guthrie, D., Parkin, D.E., Gore, M.E., and Lacave, A.J. (2001). Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. J Clin Oncol 19, 3312-3322.

    Hagman, Z., Larne, O., Edsjö, A., Bjartell, A., Ehrnström, R.A., Ulmert, D., Lilja, H., and Ceder, Y. (2010). miR-34c is downregulated in prostate cancer and exerts tumor suppressive functions. Int J Cancer 127, 2768-2776.

    Han, C., Zhao, R., Liu, X., Srivastava, A., Gong, L., Mao, H., Qu, M., Zhao, W., Yu, J., and Wang, Q.-E. (2014). DDB2 suppresses tumorigenicity by limiting the cancer stem cell population in ovarian cancer. Mol Cancer Res 12, 784-794.

    Hansford, L.M., McKee, A.E., Zhang, L., George, R.E., Gerstle, J.T., Thorner, P.S., Smith, K.M., Look, A.T., Yeger, H., Miller, F.D., et al. (2007). Neuroblastoma cells isolated from bone marrow metastases contain a naturally enriched tumor-initiating cell. Cancer Res 67, 11234-11243.

    Heddleston, J.M., Li, Z., Lathia, J.D., Bao, S., Hjelmeland, A.B., and Rich, J.N. (2010). Hypoxia inducible factors in cancer stem cells. Br J Cancer 102, 789-795.

    Heinemann, A., Zhao, F., Pechlivanis, S., Eberle, J., Steinle, A., Diederichs, S., Schadendorf, D., and Paschen, A. (2012). Tumor suppressive microRNAs miR-34a/c control cancer cell expression of ULBP2, a stress-induced ligand of the natural killer cell receptor NKG2D. Cancer Res 72, 460-471.

    Hurbin, A., Dubrez, L., Coll, J.-L., and Favrot, M.-C. (2002). Inhibition of Apoptosis by Amphiregulin via an Insulin-like Growth Factor-1 Receptor-dependent Pathway in Non-small Cell Lung Cancer Cell Lines. J Biol Chem 277, 49127-49133.

    Iorio, M.V., and Croce, C.M. (2012). MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4, 143-159.

    Ishikawa, N., Daigo, Y., Takano, A., Taniwaki, M., Kato, T., Hayama, S., Murakami, H., Takeshima, Y., Inai, K., Nishimura, H., et al. (2005). Increases of Amphiregulin and Transforming Growth Factor-α in Serum as Predictors of Poor Response to Gefitinib among Patients with Advanced Non–Small Cell Lung Cancers. Cancer Res 65, 9176.

    Jayson, G.C., Kohn, E.C., Kitchener, H.C., and Ledermann, J.A. (2014). Ovarian cancer. Lancet 384, 1376-1388.

    Jelovac, D., and Armstrong, D.K. (2012). Role of farletuzumab in epithelial ovarian carcinoma. Curr Pharm Des 18, 3812-3815.

    Jeong, J.-Y., Kang, H., Kim, T.H., Kim, G., Heo, J.-H., Kwon, A.-Y., Kim, S., Jung, S.-g., and An, H.-J. MicroRNA-136 inhibits cancer stem cell activity and enhances the anti-tumor effect of paclitaxel against chemoresistant ovarian cancer cells by targeting Notch3. Cancer Lett 386, 168-178.

    Ji, Q., Hao, X., Zhang, M., Tang, W., Yang, M., Li, L., Xiang, D., DeSano, J.T., Bommer, G.T., Fan, D., et al. (2009). MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS ONE 4, e6816.

    Kaiser, J. (2015). The cancer stem cell gamble. Science 347, 226-229.

    Kalluri, R. (2009). EMT: When epithelial cells decide to become mesenchymal-like cells. J Clin Invest 119, 1417-1419.

    Kim, J.-W., Kim, D.K., Min, A., Lee, K.-H., Nam, H.-J., Kim, J.H., Kim, J.-S., Kim, T.-Y., Im, S.-A., and Park, I.A. (2016). Amphiregulin confers trastuzumab resistance via AKT and ERK activation in HER2-positive breast cancer. J Cancer Res Clin Oncol 142, 157-165.

    Kleeff, Friess, Berberat, Martignoni, Z'Graggen, and Büchler (2000). Pancreatic Cancer - New Aspects of Molecular Biology Research. Swiss Surg 6, 231-234.

    Kreso, A., and O'Brien, C.A. (2008). Colon cancer stem cells. Current protocols in stem cell biology Chapter 3, Unit 3 1.

    Kriplani, D., and Patel, M.M. (2013). Immunohistochemistry: A diagnostic aid in differentiating primary epithelial ovarian tumors and tumors metastatic to the ovary. South Asian J Cancer 2, 254-258.

    Ledermann , J., Harter , P., Gourley , C., Friedlander , M., Vergote , I., Rustin , G., Scott , C., Meier , W., Shapira-Frommer , R., Safra , T., et al. (2012). Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N Engl J Med 366, 1382-1392.

    Li, Q.Q., Chen, Z.Q., Cao, X.X., Xu, J.D., Xu, J.W., Chen, Y.Y., Wang, W.J., Chen, Q., Tang, F., Liu, X.P., et al. (2011). Involvement of NF-κB/miR-448 regulatory feedback loop in chemotherapy-induced epithelial–mesenchymal transition of breast cancer cells. Cell Death Differ 18, 16-25.

    Li, X., Chen, Y., Wu, S., He, J., Lou, L., Ye, W., and Wang, J. (2015). microRNA-34a and microRNA-34c promote the activation of human hepatic stellate cells by targeting peroxisome proliferator-activated receptor gamma. Mol Med Rep 11, 1017-1024.

    Li, X.D., Miao, S.Y., Wang, G.L., Yang, L., Shu, Y.Q., and Yin, Y.M. (2010). Amphiregulin and Epiregulin Expression in Colorectal Carcinoma and the Correlation with Clinicopathological Characteristics. Oncol Res Treat 33, 353-358.

    Liang, D., Ma, Y., Liu, J., Trope, C.G., Holm, R., Nesland, J.M., and Suo, Z. (2012). The hypoxic microenvironment upgrades stem-like properties of ovarian cancer cells. BMC Cancer 12, 201.

    Liu, C., and Tang, D.G. (2011). MicroRNA regulation of cancer stem cells. Cancer Res 71, 5950-5954.

    Liu, T., Hou, L., and Huang, Y. (2014). EZH2-specific microRNA-98 inhibits human ovarian cancer stem cell proliferation via regulating the pRb-E2F pathway. Tumour Biol 35, 7239-7247.

    McAuliffe, S.M., Morgan, S.L., Wyant, G.A., Tran, L.T., Muto, K.W., Chen, Y.S., Chin, K.T., Partridge, J.C., Poole, B.B., Cheng, K.H., et al. (2012). Targeting Notch, a key pathway for ovarian cancer stem cells, sensitizes tumors to platinum therapy. Proc Natl Acad Sci USA 109, E2939-2948.

    Meng, E., Long, B., Sullivan, P., McClellan, S., Finan, M.A., Reed, E., Shevde, L., and Rocconi, R.P. (2012). CD44+/CD24− ovarian cancer cells demonstrate cancer stem cell properties and correlate to survival. Clin Exp Metastasis 29, 939-948.

    Morata-Tarifa, C., Jimenez, G., Garcia, M.A., Entrena, J.M., Grinan-Lison, C., Aguilera, M., Picon-Ruiz, M., and Marchal, J.A. (2016). Low adherent cancer cell subpopulations are enriched in tumorigenic and metastatic epithelial-to-mesenchymal transition-induced cancer stem-like cells. Sci Rep 6, 18772.

    Navarro, F., and Lieberman, J. (2015). miR-34 and p53: new insights into a complex functional relationship. PLoS ONE 10, e0132767.

    Ning, Y.-X., Li, Q.-X., Ren, K.-Q., Quan, M.-F., and Cao, J.-G. (2014). 7-difluoromethoxyl-5,4′-di-n-octyl genistein inhibits ovarian cancer stem cell characteristics through the downregulation of FOXM1. Oncol Lett 8, 295-300.

    O'Brien, C.A., Kreso, A., and Jamieson, C.H.M. (2010). Cancer stem cells and self-renewal. Clin Cancer Res 16, 3113-3120.

    Packeisen, J., Buerger, H., Krech, R., and Boecker, W. (2002). Tissue microarrays: a new approach for quality control in immunohistochemistry. J Clin Pathol 55, 613-615.

    Panupinthu, N., Yu, S., Zhang, D., Zhang, F., Gagae, M., Lu, Y., Grandis, J.R., Dunn, S.E., Lee, H.Y., and Mills, G.B. (2014). Self-reinforcing loop of amphiregulin and Y-box binding protein-1 contributes to poor outcomes in ovarian cancer. Oncogene 33, 2846-2856.

    Prokopi, M., Kousparou, C.A., and Epenetos, A.A. (2014). The secret role of microRNAs in cancer stem cell development and potential therapy: a Notch-pathway approach. Front Oncol 4, 389.

    Pujade-Lauraine, E., Wagner, U., Aavall-Lundqvist, E., Gebski, V., Heywood, M., Vasey, P.A., Volgger, B., Vergote, I., Pignata, S., Ferrero, A., et al. (2010). Pegylated liposomal doxorubicin and carboplatin compared with paclitaxel and carboplatin for patients with platinum-sensitive ovarian cancer in late relapse. J Clin Oncol 28, 3323-3329.

    Qin, W., Ren, Q., Liu, T., Huang, Y., and Wang, J. (2013). MicroRNA-155 is a novel suppressor of ovarian cancer-initiating cells that targets CLDN1. FEBS Lett 587, 1434-1439.

    Re, M., Çeka, A., Rubini, C., Ferrante, L., Zizzi, A., Gioacchini, F.M., Tulli, M., Spazzafumo, L., Sellari-Franceschini, S., Procopio, A.D., et al. (2015). MicroRNA-34c-5p is related to recurrence in laryngeal squamous cell carcinoma. Laryngoscope 125, E306-E312.

    Rhodes, D.R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., Barrette, T., Pandey, A., and Chinnaiyan, A.M. (2004). ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6, 1-6.

    Roberts, P.J., and Der, C.J. (2007). Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26, 3291-3310.

    Roepstorff, K., Grandal, M.V., Henriksen, L., Knudsen, S.L.J., Lerdrup, M., Grøvdal, L., Willumsen, B.M., and van Deurs, B. (2009). Differential Effects of EGFR Ligands on Endocytic Sorting of the Receptor. Traffic (Copenhagen, Denmark) 10, 1115-1127.

    Rui, M., Qu, Y., Gao, T., Ge, Y., Feng, C., and Xu, X. (2017). Simultaneous delivery of anti-miR21 with doxorubicin prodrug by mimetic lipoprotein nanoparticles for synergistic effect against drug resistance in cancer cells. Int J Nanomedicine 12, 217-237.

    Sasaki, R., Aoki, S., Yamato, M., Uchiyama, H., Wada, K., Ogiuchi, H., Okano, T., and Ando, T. (2010). A protocol for immunofluorescence staining of floating neurospheres. Neurosci Lett 479, 126-127.

    Schneider, M.R., and Wolf, E. (2009). The epidermal growth factor receptor ligands at a glance. J Cell Physiol 218, 460-466.

    Sebio, A., Paez, D., Salazar, J., Berenguer-Llergo, A., Pare-Brunet, L., Lasa, A., del Rio, E., Tobena, M., Martin-Richard, M., Baiget, M., et al. (2014). Intergenic polymorphisms in the amphiregulin gene region as biomarkers in metastatic colorectal cancer patients treated with anti-EGFR plus irinotecan. Pharmacogenomics J 14, 256-262.

    Shi, Y., Liu, C., Liu, X., Tang, D.G., and Wang, J. (2014). The microRNA miR-34a inhibits non-small cell lung cancer (NSCLC) growth and the CD44hi stem-like NSCLC cells. PLoS ONE 9, e90022.

    Shoyab, M., McDonald, V.L., Bradley, J.G., and Todaro, G.J. (1988). Amphiregulin: a bifunctional growth-modulating glycoprotein produced by the phorbol 12-myristate 13-acetate-treated human breast adenocarcinoma cell line MCF-7. Proc Natl Acad Sci USA 85, 6528-6532.

    Siegel, R., Naishadham, D., and Jemal, A. (2013). Cancer statistics, 2013. CA Cancer J Clin 63, 11-30.

    Skiriutė, D., Vaitkienė, P., Ašmonienė, V., Steponaitis, G., Deltuva, V.P., and Tamašauskas, A. (2013). Promoter methylation of AREG, HOXA11, hMLH1, NDRG2, NPTX2 and Tes genes in glioblastoma. J Neurooncol 113, 441-449.

    Smith, A. (2006). A glossary for stem-cell biology. Nature 441, 1060-1060.

    Specenier, P., and Vermorken, J.B. (2013). Cetuximab: its unique place in head and neck cancer treatment. Biologics 7, 77-90.

    Sternlicht, M.D., Sunnarborg, S.W., Kouros-Mehr, H., Yu, Y., Lee, D.C., and Werb, Z. (2005). Mammary ductal morphogenesis requires paracrine activation of stromal EGFR via ADAM17-dependent shedding of epithelial amphiregulin. Development 132, 3923.

    Stewart, J.M., Shaw, P.A., Gedye, C., Bernardini, M.Q., Neel, B.G., Ailles, L.E., and Mak, T.W. (2011). Phenotypic heterogeneity and instability of human ovarian tumor-initiating cells. Proc Natl Acad Sci USA 108, 6468-6473.

    Taira, N., Yamaguchi, T., Kimura, J., Lu, Z.-G., Fukuda, S., Higashiyama, S., Ono, M., and Yoshida, K. (2014). Induction of amphiregulin by p53 promotes apoptosis via control of microRNA biogenesis in response to DNA damage. Proc Natl Acad Sci USA 111, 717-722.

    Thøgersen, V.B., Sørensen, B.S., Poulsen, S.S., Ørntoft, T.F., Wolf, H., and Nexo, E. (2001). A Subclass of HER1 Ligands Are Prognostic Markers for Survival in Bladder Cancer Patients. Cancer Res 61, 6227.

    van Diest, P.J., van Dam, P., Henzen-Logmans, S.C., Berns, E., van der Burg, M.E., Green, J., and Vergote, I. (1997). A scoring system for immunohistochemical staining: consensus report of the task force for basic research of the EORTC-GCCG. European Organization for Research and Treatment of Cancer-Gynaecological Cancer Cooperative Group. J Clin Pathol 50, 801-804.

    Vasey, P.A., Jayson, G.C., Gordon, A., Gabra, H., Coleman, R., Atkinson, R., Parkin, D., Paul, J., Hay, A., Kaye, S.B., et al. (2004). Phase III randomized trial of docetaxel–carboplatin versus paclitaxel–carboplatin as first-line chemotherapy for ovarian carcinoma. J Natl Cancer Inst 96, 1682-1691.

    Vathipadiekal, V., Saxena, D., Mok, S.C., Hauschka, P.V., Ozbun, L., and Birrer, M.J. (2012). Identification of a potential ovarian cancer stem cell gene expression profile from advanced stage papillary serous ovarian cancer. PLoS One 7, e29079.

    Ventura, A., and Jacks, T. (2009). miRNAs and cancer: a little RNA goes a long way. Cell 136, 586-591.

    Vergote, I.B., Jimeno, A., Joly, F., Katsaros, D., Coens, C., Despierre, E., Marth, C., Hall, M., Steer, C.B., Colombo, N., et al. (2014). Randomized Phase III Study of Erlotinib Versus Observation in Patients With No Evidence of Disease Progression After First-Line Platin-Based Chemotherapy for Ovarian Carcinoma: A European Organisation for Research and Treatment of Cancer-Gynaecological Cancer Group, and Gynecologic Cancer Intergroup Study. J Clin Oncol 32, 320-326.

    Visscher, D.W., Sarkar, F.H., Kasunic, T.C., and Reddy, K.B. (1997). Clinicopathologic analysis of amphiregulin and heregulin immunostaining in breast neoplasia. Breast Cancer Res Treat 45, 75-80.

    Wang, L., Wu, H., Wang, L., Lu, J., Duan, H., Liu, X., and Liang, Z. (2016). Expression of amphiregulin predicts poor outcome in patients with pancreatic ductal adenocarcinoma. Diagn Pathol 11, 60.

    Wang, Z. (2012). Mutual Regulation of Receptor-Mediated Cell Signalling and Endocytosis: EGF Receptor System as an Example. In Molecular Regulation of Endocytosis, B. Ceresa, ed. (Rijeka: InTech), p. Ch. 12.

    Wang, Z., and Burke, P.A. (2013). The role of microRNAs in hepatocyte nuclear factor-4alpha expression and transactivation. Biochim Biophys Acta 1829, 436-442.

    Willmarth, N.E., and Ethier, S.P. (2006). Autocrine and juxtacrine effects of amphiregulin on the proliferative, invasive, and migratory properties of normal and neoplastic human mammary epithelial cells. J Biol Chem 281, 37728-37737.

    Wintzell, M., Hjerpe, E., Avall Lundqvist, E., and Shoshan, M. (2012a). Protein markers of cancer-associated fibroblasts and tumor-initiating cells reveal subpopulations in freshly isolated ovarian cancer ascites. BMC Cancer 12, 359.

    Wintzell, M., Löfstedt, L., Johansson, J., Pedersen, A.B., Fuxe, J., and Shoshan, M. (2012b). Repeated cisplatin treatment can lead to a multiresistant tumor cell population with stem cell features and sensitivity to 3-bromopyruvate. Cancer Biol Ther 13, 1454-1462.

    Wu, G., Liu, A., Zhu, J., Lei, F., Wu, S., Zhang, X., Ye, L., Cao, L., and He, S. (2015). MiR-1207 overexpression promotes cancer stem cell–like traits in ovarian cancer by activating the Wnt/β-catenin signaling pathway. Oncotarget 6, 28882-28894.

    Wu, Q., Guo, R., Lin, M., Zhou, B., and Wang, Y. (2011). MicroRNA-200a inhibits CD133/1+ ovarian cancer stem cells migration and invasion by targeting E-cadherin repressor ZEB2. Gynecol Oncol 122, 149-154.

    Wu, Z., Wu, Y., Tian, Y.E., Sun, X., Liu, J., Ren, H., Liang, C., Song, L., Hu, H., Wang, L., et al. (2013). Differential effects of miR-34c-3p and miR-34c-5p on the proliferation, apoptosis and invasion of glioma cells. Oncol Lett 6, 1447-1452.
    Xu, C.-X., Xu, M., Tan, L., Yang, H., Permuth-Wey, J., Kruk, P.A., Wenham, R.M., Nicosia, S.V., Lancaster, J.M., Sellers, T.A., et al. (2012). MicroRNA miR-214 regulates ovarian cancer cell stemness by targeting p53/Nanog. J Biol Chem 287, 34970-34978.

    Xu, F., Liao, J.Z., Xiang, G.Y., Zhao, P.X., Ye, F., Zhao, Q., and He, X.X. (2017). MiR‐101 and doxorubicin codelivered by liposomes suppressing malignant properties of hepatocellular carcinoma. Cancer Med 6, 651-661.

    Xu, Q., Ying, M., Chen, G., Lin, A., Xie, Y., Ohara, N., and Zhou, D. (2014). ADAM17 is associated with EMMPRIN and predicts poor prognosis in patients with uterine cervical carcinoma. Tumour Biol 35, 7575-7586.

    Yamada, M., Ichikawa, Y., Yamagishi, S., Momiyama, N., Ota, M., Fujii, S., Tanaka, K., Togo, S., Ohki, S., and Shimada, H. (2008). Amphiregulin Is a Promising Prognostic Marker for Liver Metastases of Colorectal Cancer. Clin Cancer Res 14, 2351.

    Yang, X., Lin, X., Zhong, X., Kaur, S., Li, N., Liang, S., Lassus, H., Wang, L., Katsaros, D., Montone, K., et al. (2010). Double negative feedback loop between reprogramming factor LIN28 and microRNA let-7 regulates aldehyde dehydrogenase 1-positive cancer stem cells. Cancer Res 70, 9463-9472.

    Yasumoto, K., Yamada, T., Kawashima, A., Wang, W., Li, Q., Donev, I.S., Tacheuchi, S., Mouri, H., Yamashita, K., Ohtsubo, K., et al. (2011). The EGFR Ligands Amphiregulin and Heparin-Binding EGF-like Growth Factor Promote Peritoneal Carcinomatosis in CXCR4-Expressing Gastric Cancer. Clin Cancer Res 17, 3619.

    Yeh, Y.-M., Chuang, C.-M., Chao, K.-C., and Wang, L.-H. (2013). MicroRNA-138 suppresses ovarian cancer cell invasion and metastasis by targeting SOX4 and HIF-1α. Int J Cancer 133, 867-878.

    Yoshitomi, T., Kawakami, K., Enokida, H., Chiyomaru, T., Kagara, I., Tatarano, S., Yoshino, H., Arimura, H., Nishiyama, K., Seki, N., et al. (2011). Restoration of miR-517a expression induces cell apoptosis in bladder cancer cell lines. Oncol Rep 25, 1661-1668.

    Yotsumoto, F., Yagi, H., Suzuki, S.O., Oki, E., Tsujioka, H., Hachisuga, T., Sonoda, K., Kawarabayashi, T., Mekada, E., and Miyamoto, S. (2008). Validation of HB-EGF and amphiregulin as targets for human cancer therapy. Biochem Biophys Res Commun 365, 555-561.

    Yu, F., Jiao, Y., Zhu, Y., Wang, Y., Zhu, J., Cui, X., Liu, Y., He, Y., Park, E.-Y., Zhang, H., et al. (2012). MicroRNA 34c gene down-regulation via DNA methylation promotes self-renewal and epithelial-mesenchymal transition in breast tumor-initiating cells. J Biol Chem 287, 465-473.

    Yu, M., Xue, Y., Ma, P.X., Mao, C., and Lei, B. (2017). Intrinsic Ultrahigh Drug/miRNA Loading Capacity of Biodegradable Bioactive Glass Nanoparticles toward Highly Efficient Pharmaceutical Delivery. ACS Appl Mater Interfaces 9, 8460-8470.

    Yu, Z., Kim, J., He, L., Creighton, C.J., Gunaratne, P.H., Hawkins, S.M., and Matzuk, M.M. (2014). Functional analysis of miR-34c as a putative tumor suppressor in high-grade serous ovarian cancer. Biol Reprod 91, 113.

    Zhang, J., Wang, Y., Chen, X., Zhou, Y., Jiang, F., Chen, J., Wang, L., and Zhang, W.-F. (2015). MiR-34a suppresses amphiregulin and tumor metastatic potential of head and neck squamous cell carcinoma (HNSCC). Oncotarget 6, 7454-7469.

    Zhang, S., Cui, B., Lai, H., Liu, G., Ghia, E.M., Widhopf, G.F., Zhang, Z., Wu, C.C.N., Chen, L., Wu, R., et al. (2014). Ovarian cancer stem cells express ROR1, which can be targeted for anti–cancer-stem-cell therapy. Proc Natl Acad Sci USA 111, 17266-17271.

    Zlobec, I., Steele, R., Michel, R.P., Compton, C.C., Lugli, A., and Jass, J.R. (2006). Scoring of p53, VEGF, Bcl-2 and APAF-1 immunohistochemistry and interobserver reliability in colorectal cancer. Mod Pathol 19, 1236-1242.

    QR CODE