簡易檢索 / 詳目顯示

研究生: 黃飛豪
Huang, Fei Hao
論文名稱: 國聖電廠TRACE/CONTAN模式建立與應用
The Establishment and Application of Kuosheng TRACE/CONTAN Model
指導教授: 陳紹文
Chen, Shao Wen
王仲容
Wang, Jong Rong
口試委員: 鄭憶湘
Cheng, Yi Hsiang
楊融華
Yang, Jung Hua
學位類別: 碩士
Master
系所名稱: 原子科學院 - 核子工程與科學研究所
Nuclear Engineering and Science
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 103
中文關鍵詞: 國聖電廠圍阻體熱水流分析
外文關鍵詞: Kuosheng NPP, containment, thermal hydraulic
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之主要目的為利用TRACE程式以及最新加入其中的CONTAN組件建立國聖電廠之分析模式,進行熱水流分析。透過此種分析模式的計算可以觀察到反應器與圍阻體交互影響的結果。本研究首先利用TRACE/CONTAN程式,建立國聖電廠之圍阻體分析模式。在成功建立國聖電廠圍阻體分析模式之後,根據FSAR第15章中各項假設,進行主蒸汽管破管(MSLB)之短程暫態模擬,並與FSAR、以及GOTHIC分析結果做比較。研究結果顯示在發生MSLB的情況之下,整體趨勢與FSAR、GOTHIC之分析結果大致相同。在完成圍阻體分析模式的建立及分析後,與本研究團隊原先已建立並完成驗證的國聖電廠反應器分析模式結合,進行MSLB,以及飼水控制器失效無旁通(FWCFNB)兩案例的模擬分析。由MSLB的結果可看出:圍阻體與反應器的交互運算與否確實會對結果造成影響。而由FWCFNB的結果可了解:面對爐心高壓的正常釋壓情況下,短期內對於圍阻體的危害甚小。目前已完成國聖電廠TRACE/CONTAN分析模式的建立,並運用在數項案例分析上。其結果可做為暫態發生時的相關評估;此外,本研究對於未來國內其他三座核電廠的圍阻體分析將會有一定程度的幫助。


    The objectives of this thesis is to establish a Kuosheng Mark III containment model using CONTAN, which is coupled with Kuosheng Boiling Water Reactor (BWR) model using TRACE. The result of coupled calculation was different to other researches which calculate them separately.
    The Kuosheng CONTAN analysis model was built up refers to FSAR and other related documents. After the model had been established, the Main Steamline Break (MSLB) transient was simulated and compared to FSAR’s results.
    After the CONTAN analysis, the model was coupled to Kuosheng TRACE model, and two cases, MSLB, and Feedwater Controller Failure without Bypass (FWCFNB) were used to simulate the transient in containment. Both transients caused the injection of working fluid. However, MSLB transient let the working fluid go into the drywell, and FWCFNB let it go through the SRVs, ended in the suppression pool. The result of MSLB analysis was compared to FSAR and GOTHIC’s analysis, while FWCFNB (NPP part) was compared to FSAR. The trends of the Kuosheng TRACE/CONTAN model’s result were correspond to FSAR and GOTHIC’s, which were approximately the same.

    摘要 i Abstract ii 致謝 iii 表目錄 vii 圖目錄 viii 符號說明 xi 第1章 緒論 1 第2章 文獻回顧 3 第3章 程式介紹及模式建立 13 第4章 國聖電廠TRACE/CONTAN暫態模式 30 第5章 分析結果與討論 38 第6章 結論與建議 54 參考文獻 57 附錄 61

    [1] 李京翰,「核一廠TRACE模式的建立與驗證」,國立清華大學核子工程與科學研究所,碩士論文,中華民國九十八年。
    [2] 陳龍文,「國聖電廠TRACE模式的建立與驗證」,國立清華大學核子工程與科學研究所,碩士論文,中華民國九十八年七月。
    [3] 楊融華,「馬鞍山電廠TRACE模式發展與設計基準喪失冷卻水事故分析之應用」,國立清華大學工程與系統科學系,博士論文,中華民國一百零二年。
    [4] 楊書明,「台電核四廠TRACE安全分析模式建立與穩態分析」,國立清華大學工程與系統科學系,碩士論文,中華民國九十七年。
    [5] J. Freixa, and A. Manera ”Analysis of an RPV upper head SBLOCA at the ROSA facility using TRACE”, Nuclear Engineering and Design, vol. 240, pp. 1779-1788, 2010。
    [6] L.J. Metcalfe, D.W. Hargroves, R.A. Wells ”Containment accident analysis using CONTEMPT4/MOD2 Compared with experimental data”, Idaho National Engineering Laboratory, June 1978
    [7] Chunkuan Shih, “The Development and Application of Kuosheng (BWR/6) Nuclear Power Plant TRACE/SNAP Model”, NUREG/IA-0450
    [8] Jong Rong Wang, “TRACE Modeling of Kuosheng BWR/6 Startup Tests”, Transaction- American Nuclear Society
    [9] Kuan Yuan Lin, “Verification of the Kuosheng BWR/6 TRACE Model with Load Rejection Startup Test”, ASME V&V, America, 2012
    [10] Fei Hao Huang, “The Model Establishment and Assessment of Transients for Kuosheng (BWR/6)NPP after SPU with TRACE/FRAPCON/FRAPTRAN”, ICAPP 2015
    [11] Hao Chun Chang, “The Establishment and Application of TRACE/FRAPTRAN Model for Kuosheng Nuclear Power Plant“, World Academy of Science, Engineering and Technology, International Journal of Chemical, Nuclear, Metallurgical and Materials Engineering Vol:8 No:12, 2014
    [12] 林冠源,「國聖電廠類福島全黑事故之模擬與分析」,國立清華大學核子工程與科學研究所,碩士論文,中華民國一百零一年年七月。
    [13] J.R. Wang, H.C. Chen, ”Containment Simulation and Analysis of TRACE in Kuosheng (BWR/6) Nuclear Power Plant”, ICONE23, Japan, 2015。
    [14] Kuosheng Unit 1 Cycle 22 Principal Plant Parameters, AREVA, April 2010。
    [15] 張皓鈞,「利用TRACE/FRAPTRAN對國聖電廠進行增壓暫態的燃料護套機械性質與不準度分析」,國立清華大學工程與系統科學系,碩士論文,中華民國一百零四年七月。
    [16] “Aircraft Crash Impact Analyses Demonstrate Nuclear Power Plant’s Structural Strength”, December 2002。
    [17] Richard P. Ofstun , James H. Scobel , “Westinghouse Containment Analysis Methodology”, WCAP-16608-NP, August, 2006
    [18] J. A. Schroeder, D. J. Pafford, D. L. Kelly, K. R. Jones, R. J. Dallman, ” An Assessment of BWR Mark III Containment Challenges, Failure Modes, and Potential Improvements in Performance”,NUREG/CR-5529, Feb. 1991
    [19] Omid Noori-Kalkhoran, Mohammad Rahgoshay, ”Analysis of thermal–hydraulic parameters of WWER-1000 containment in a large break LOCA”, Annals of Nuclear Energy, Volume 68, June 2014, Pages 101–111。
    [20] A.S. Lin, Y.S. Chen,” Kuosheng Mark III containment analyses using GOTHIC ”, Nuclear Engineering and design, Volume 263, October 2013, Pages 255–262。
    [21] 台灣電力公司,「國聖電廠訓練教材」。
    [22] Taiwan Power Company, “Final Safety Analysis Report for Kuosheng Nuclear Power Station Units 1&2 (FSAR)”, June, 2009。
    [23] 國聖電廠RETRAN模式設計檔案(A1048H),簡弘欽,中華民國95年8月。
    [24] NRC Regulations (10CFR) Appendix A to part 50 – General Design Criteria for Nuclear Power Plants。
    [25] TRACE V5.0 User’s manual, Volume 2: Modeling Guidelines, U.S. Nuclear Regulatory Commission。
    [26] Technical Specifications, Kuosheng Nuclear Power Station Units 1 and 2, Rev.0, January, 2008.
    [27] “CONTEMPT-LT/028-A Computer Program for Predicting Containment Pressure-Temperature Response to a Loss-of-Coolant Accident”, NUREG/CR-0225。
    [28] K.J. Geelhood, W.G.L., C.E. Beyer, “FRAPTRAN 1.4: Integral Assessment”, 2011, Pacific Northwest National Laboratory。
    [29] K.J. Geelhood, W.G.L., C.E. Beyer, “FRAPCON-3.4: Integral Assessment, 2011, Pacific Northwest National Laboratory。
    [30] Standard Review Plan 6.2.1, Containment Functional Design, NUREG-0800, Rev. 3, U.S. Nuclear Regulatory, Commission, March 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE