簡易檢索 / 詳目顯示

研究生: 曾恆次
H.T. Hans Tseng
論文名稱: 通訊用光纖之輻射效應
Radiation effects on the optical fiber applied in telecommunication
指導教授: 袁立基 教授
Liq-Ji Yuan
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 68
中文關鍵詞: 光纖摻雜物光時域反射儀退火效應輻射效應
外文關鍵詞: Optical fiber, Dopant, OTDR, Annealing., Radiation effect
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    光纖具有高頻寬、快傳輸速度及無電磁干擾等特性,因此在近10年來,它開始在全世界通訊領域中被大量地使用。另一方面,在某些特殊環境之條件中如核電廠、太空衛星…等高輻射區域,在使用光傳輸裝置日漸增多已成為必然之趨勢,於是在全世界許多相關機構如歐洲太空總署(ESA) 、美國太空總署(NASA)及美國戈大航太中心(Goddard Space Flight Center/ Swales Aerospace)等,皆先後對光通訊元件如光分歧器(Splitter) 、波長分工器(Wave Length Multiplexer)光纖、光纜、連接器跳線…等進行一連串之實驗,以掌握這些元件在輻射照射下光學特性之影響。本研究之主要目的在於實際上以美國康寧公司之單模(Single Mode)及多模光纖進行60Co之輻射照射,以線上即時偵測之方式探索光纖在輻射場中之輻射誘導衰減情形,以及離開輻射場後之恢復情形。由於測試條件不同,本研究同時比較以目前光通訊領域常用之單模(SM)光纖在1310nm及1550nm波長,以及多模(MM) 光纖在850nm及1310nm波長範圍,實際以OTDR測量其衰減變化與國外類似研究結果比較,研究結果發現光纖在3KGy(Si)之照射過程中,其光衰減值明顯上升。多模62.5/125光纖絲使用在850nm波長,雖其衰減值不高,但其OTDR波形顯示已充滿雜訊(Noise)不堪使用。另外在退火方面,實驗數據顯示35℃左右是單模光纖絲之適當退火溫度.


    ABSTRACT
    Optical fiber possesses the characteristics of broader band, faster transmission speed and no electronic magnetic interference etc., which has been broadly applied in the field of telecommunication in the last decade. On the other hand, in some specific high radiation zones such as nuclear power plant, space satellite etc., the increasing application of optical transmission facilities has been become a consequential trend.

    As far as radiation effects being concerned the related organizations such as European Space Agency (ESA), National Aeronautics and Space Administration (NASA), Goddard Space Flight Center/Swales Aerospace are all proceeding a series of tests on optical communication parts such as splitter, wave length multiplexer, optical fiber, OFC, connector, patch cord…etc.

    For the purpose of controlling their characteristics under radiation field, the major purpose of this research is testing Corning company’s single mode & multimode optical fiber by means of 60Co irradiation. In the mean time, we were measuring induced attenuation by on-line monitoring, and studying the situation after irradiation. This project is also comparing with the results that have been achieved by the other nations. Besides, we were measuring attenuation by means of OTDR (Optical Time Domain Reflectometers) on single mode optical fiber applied in 1310nm & 1550nm wave length and multimode optical fiber applied in 850nm & 1310nm wave length. This test result showing that the attenuation is remarkably increasing during 3kGy(Si) irradiation. Multimode optical fiber applied in 850nm wave length is not available as its spectrum of OTDR is full of noise although its attenuation was not high. As to annealing, testing results were not good at full temperature range but just appropriate at the temperature of 35℃.

    目 錄 ABSTRACT 7 誌 謝 9 第一章 前言 10 1.1 研究緣起 10 1.2 研究目的 10 1.3 研究內容 11 第 二 章 研究背景 13 2-1 背景 13 2-2光纖訊號傳輸的基本模態 13 2-2-1 單模光纖 14 2-2-2多模光纖 14 2-2-3 光傳輸原理與光損失 15 2-3 輻射與光纖作用之效應 17 第三章 研究法與分析 18 3-1 光纖摻雜物重要元素分析 18 3-1-1 中子活化分析法 18 A 中子活化分析基本原理 18 B. 儀器校正 20 a. 能量校正 20 b. 效率校正 21 3-1-2 感應耦合電漿質譜分析儀分析法 21 3-2輻射照射與劑量計測 22 3-2-1 輻射照射廠與照射試樣安排 22 3-2-2劑量計測原理與方法 23 3-2-3 光纖吸收劑量之轉換【11】【12】 23 3-3 光纖輻射效應之測量 24 3-3-1線上即時量測 24 3-3-2離線量測-OTDR量測原理與方法 25 3-3-3 退火效應與測量 25 第四章 結果與討論 27 4-1 光纖主要不純物分析結果與討論 27 4-2 光纖絲之輻射效應 31 4-3 光纖於輻射照射後之恢復 38 4-3-1 照射後效應與自然恢復 38 4-3-2 退火效應(annealing effects) 47 第五章 結論 49 附錄 I 52 附錄 II 59 附錄 III 61 附錄 IV 63 參考文獻 66

    參考文獻
    1 . Melanie N.Ott, “Fiber optic cable assemblies for space flight II: thermal and radiation effects” SPIE vol.3440 ,P37~46, July 1998
    2. Xenophon Glavas,Lawrence Lembo, Warren Haraki, Shimen Claxton“Radiation test result of polarization maintaining fiber at 1.55m over a wide temperature range” SPIE vol.3440, pp120-130, July 1998
    3. Jan Troska, Jeremy Batten, Karl Gill, Francois Vasey.“Radiation effects in commercial off-the shelf Single-mode optical fibers” SPIE vol.3440, pp112-119, July 1998
    4. P. Borgermans and M. Noel “Multiple Wavelength Analysis of Radiation-Induced Attenuation on Optical Fibers: A Novel Approach in Fiber Optic Dosimetry” IEEE Transactions on instrumentation and measurement, vol.47, No.5, pp1255-1258, October 1998
    5. Kanofsky,A “Radiation Exposure Challenges at the General Physics Institute of the Optical-Fiber Performance” Laser Focus World, pp.145-152, Mar. 1993.
    6. E. J. Friebele, D. L. Griscom, and G.H. Sigel Jr., “Defect centers in a germanium-doped Silica-core optical fiber”Journal of Applied physics, vol 45, No.8, pp3424-28 August 1974
    7. F. J. Feigl,and J. H. Anderson., “Defects in crystalline quartz:Electron Paramagnetic Resonance of E´ vacancy centers associated with germanium impurities” J. phys. Chem. Solid Pergamon Press 1970. vol 31, PP.575~596, 1970
    8. Kenneth A. LaBel, Cheryl J. Marshall, Paul W. Marshall, Philip J. Luers, Robert A. Reed, Melanie N. Ott, Christina M. Seidleck, and Dennis J. Andrucyk. “On the Suitability of Fiber Optic Data Links in the Space Radiation Environment: A Historical and Scaling Technology Perspective” RADECS 97, Fourth European Conference on Radiation and its Effects on Components and Systems (Cat. No.97TH8294)421-34 xxiii+588. 20ref. IEEE, 1998
    9. D. l. Griscom, E. J. Friebele, and K. J. Long, and J. W. Fleming. “Fundamental defect centers in glass:Electron spin resonance and optical absorption studies of irradiated phosphorus-doped Silica glass and optical fibers” J. Appl. Phys. 54(7), July 1983
    10. A. L. Tomashuk, E. M. Dianov, K. M. Golant, and A. O. Rybaltovskii. “ γ-Radiation-Induced Absorption in Pure-Silica-Core Fibers in the ViSible Spectral Region:the Effect of H2-Loading” RADECS 97. Fourth European Conference on Radiation and its Effects on Components and Systems (Cat. No.97TH8294)476-9 xxiii+588. 13ref. IEEE, 1998
    11. Frank Herbert Attix. “Introduction To Radiological Physics And Radiation Dosimetry” Appendex D.3.John Wiley & Sons,Inc. 1986.
    12. 輻防協會, “游離輻射防護彙萃” P.240~242, 1994.4.
    13. E.J. Friebele, G.H. Sigel, Jr. and M.E. Gingerich “Radiation response of fiber optic wave guides in the 0.4 to 1.7 μregion” IEEE Transactions on Nuclear Science, Vol. NS-25, No.6 December 1978
    14.Gill,Arbet-Engels, .Batten,G.Cervelli,R.Grabit,C.Mommaert, Stefanini, J.Troska and F.Vasey. “Radiation Damage Studies of Opto Electronic Components for the CMS Tracker Optical Links”RADECS 97, fourth European Conference on Radiation and its Effects on Components and Systems (Cat. No.97TH8294)405-12,xiii+588. 31ref. IEEE. 1998
    15. Eiji Takada, Atsushi Kimura, Yoneichi Hosono, Hiroyuki Takahashi and Masaharu Nakazawa. “Radiation Distribution Measurements with Optical Fibers in High Radiation Fields” 1998 IEEE Nuclear Science Symposium and medical Imaging Conference (Cat. No.98CH36255)791-5 vol.2 1998
    16. M.Van Uffelen, FR Ph. Fenaux , Le Creusot, “Radiation Resistance of Fiber optic Components and Predictive Models for Optical Fiber Systems in Nuclear Environments”RADECS 97, Fourth European Conference on Radiation and its Effects on Components and Systems (Cat. No.97TH8294)45-52 1998.
    17.Aguilar,A. “Characterization of Optical Device for Space applications” Electrical Communication 62(1), pp.106-112, 1998
    18. J. J. Suter, J. C. Poret ,M. Rosen, and J.M. Rifkind. “Ionizing Radiation Detector Using Multimode Optical Fibers” IEEE Transactions on nuclear science vol.40,No.4, pp466-69,August 1993.
    19. A.L. Tomashuk, E.M.Dianov, K.M.Golant, R.R.Khrapko, and D.E.Spinov “Performance of Special Radiation-Hardened Optical Fibers Intended for Use in the Telecom Spectral Windows at a Mega gray Level” RADECS 97. Fourth European Conference on Radiation and its Effects on Components and Systems (Cat. No.97TH8294)453-6 1998.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE