研究生: |
蕭聖議 Hsiao, Sheng-Yi. |
---|---|
論文名稱: |
順序型真空蒸鍍有機金屬鹵化鈣鈦礦太陽能電池 Sequential Vacuum Deposited Organometallic Halide Perovskite Solar Cells |
指導教授: |
林皓武
Lin, Hao-Wu |
口試委員: |
朱治偉
Chu, Chih-Wei 陳昭宇 Chen, Chao-Yu 張志宇 Chang, Chih-Yu 周鶴修 Chou, Ho-Hsiu |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 155 |
中文關鍵詞: | 鈣鈦礦太陽能電池 、真空蒸鍍 、有機無機混成鈣鈦礦 、全真空製程 |
外文關鍵詞: | perovskitesolar cell, vacuumdeposition, allvacuumprocess, ETL |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究成功開發出高再現性的順序型真空製程並應用於全真空蒸鍍鈣鈦礦太陽能電池,其元件最高效率可達到17.6%。研究內容包含各種兩階段製程的開發、順序型真空製程的發展、有機電子傳輸層的開發與真空環境下有機鹵化物的反應特性進行探討。
在論文第一部分中,詳細的介紹有機無機混成鈣鈦礦結構特性與溶液/真空製程之鈣鈦礦太陽能電池發展,接著進行開發各種二階段鈣鈦礦製程(浸漬反應、刮刀塗佈、順序型真空蒸鍍)並應用於平面型結構的CH3NH3PbI(3-x)Clx鈣鈦礦太陽能池。綜合第一與二章的文獻回顧與實驗結果的分析,提供後續全真空蒸鍍鈣鈦礦研究發展之走向。
在論文第二部分中,本研究打造新型真空腔體用來開發順序型鈣鈦礦真空製程,將詳細針對製程開發歷程進行分析,立基於前兩章結論,在第三章中進一步對有機鹵化物之關鍵參數控制,找出最佳鈣鈦礦製程條件,其鈣鈦礦晶體之表面型貌可達到微米尺度且結晶邊界皆與基板垂直分佈。搭配新型的載子傳輸層,使鈣鈦礦太陽能電池最高效率可達到17.6%且元件皆在全真空製程下製備。另外,第四章中開發新型有機電子傳輸層並應用於元件,其中BPTI-2應用於全真空蒸鍍鈣鈦礦太陽能電池下具有最佳表現,成功開創新型非富勒烯系統的全真空製程鈣鈦礦太陽能電池。
在論文的第三部分中,在全真空蒸鍍鈣鈦礦太陽能電池成功開發後,將在第五章中探討,真空環境中有機鹵化物對鈣鈦礦的反應機制。結果顯示有機鹵化物對鈣鈦礦最終成份具有絕對的支配性,此現象非常不同於溶液製程所表現的特性。此結果同時也指引未來開發多成份組成鈣鈦礦真空製程之參考。最後(第六章),將綜合所有數據研究做個總結論,提供未來學者研究之參考依據。
In this dissertation, I focused on the development of the two-step vacuum deposited organometallic halide perovskite solar cells.
In the first part of this thesis, I first reviewed the development of the solution and vacuum deposited organometallic halide perovskite solar cells, including the theory and working mechanisms of the solar cell. Next, I developed two-step dipping reaction, blade coating and sequential vacuum deposition to fabricate the perovskite solar cell.
In the second part, according to the results mentioned in the chapter 2, I systematically studied the effect of the organic halide in the sequential vacuum process. The distinct morphologies of the perovskite films were found with the variation of the organic halide partial pressure during the vacuum deposition process. In the optimized condition, not only all-vacuum deposited perovskite thin films exhibited large but smooth crystalline morphologies but the device efficiency was boosted up to 17.6%. In Chapter 4, I investigated novel electron transport layers, BPTI-1, 2, 3, 4, for the perovskite solar cells. All of the BPTI-based organic molecules showed high thermal stabilities and suitible HOMO values to be paired with the perovskite active layers. Notably, the device utilizing the non-fullerene BPTI-2 electron transporting layer exhibited good performance in the all-vacuum deposited perovskite solar cells.
In the third part, I further studied the perovskite formation of some non-traditional Lead precursors reacted with the organic halide vapors in the vacuum environment. I found that the organic halides dominated the final composition of the perovskites regardless of the Lead precursors. It was an important information for further development of multi-cation, multi-anion perovskites by using the sequential vacuum deposition.
[1] Q. Schiermeier, J. Tollefson, T. Scully, A. Witze, O. Morton, Nature 2008, 454, 816.
[2] M. A. Green, Physica E Low Dimens. Syst. Nanostruct. 2002, 14, 11.
[3] https://www.nrel.gov/pv/assets/images/efficiency-chart.png
[4] D. M. Chapin, C. S. Fuller, G. L. Pearson, J. Appl. Phys. 1954, 25, 676.
[5] D. E. Carlson, C. R. Wronski, Appl. Phys. Lett. 1976, 28, 671.
[6] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, Prog. Photovoltaics Res. Appl. 2009, 17, 320.
[7] Y. Zhou, L. Ding, K. Shi, Y. Z. Dai, N. Ai, J. Wang, J. Pei, Adv. Mater. 2012, 24, 957.
[8] M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin, Z. Lin, Mater. Today 2015, 18, 155.
[9] Q. Zhang, B. Kan, F. Liu, G. Long, X. Wan, X. Chen, Y. Zuo, W. Ni, H. Zhang, M. Li, Z. Hu, F. Huang, Y. Cao, Z. Liang, M. Zhang, T. P. Russell, Y. Chen, Nat. Photonics 2015, 9, 35.
[10] D. Weber, Z. Naturforsch. B Chem. Sci. 1978, 33.
[11] D. Weber, Z. Naturforsch. B Chem. Sci. 1978, 33, 862.
[12] M. Hirasawa, T. Ishihara, T. Goto, J. Phys. Soc. Jpn. 1994, 63, 3870.
[13] I. B. Koutselas, L. Ducasse, G. C. Papavassiliou, J. Phys.: Condens. Matter 1996, 8, 1217.
[14] T. Ishihara, J. Lumin. 1994, 60, 269.
[15] M. Hirasawa, T. Ishihara, T. Goto, K. Uchida, N. Miura, Physica B Condens Matter 1994, 201, 427.
[16] K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, N. Miura, Solid State Commun. 2003, 127, 619.
[17] S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sum, Y. M. Lam, Energy Environ. Sci. 2014, 7, 399.
[18] A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T.-W. Wang, S. D. Stranks, H. J. Snaith, R. J. Nicholas, Nat. Phys. 2015, 11, 582.
[19] T. C. Sum, N. Mathews, Energy Environ. Sci. 2014, 7, 2518.
[20] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341.
[21] D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, O. M. Bakr, Science 2015, 347, 519.
[22] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
[23] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, Nanoscale 2011, 3, 4088.
[24] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, N. G. Park, Sci. Rep. 2012, 2, 591.
[25] L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 2012, 134, 17396.
[26] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643.
[27] M. Liu, M. B. Johnston, H. J. Snaith, Nature 2013, 501, 395.
[28] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Nat. Mater. 2014, 13, 897.
[29] N. Ahn, D.-Y. Son, I.-H. Jang, S. M. Kang, M. Choi, N.-G. Park, J. Am. Chem. Soc. 2015, 137, 8696.
[30] W. Ke, D. Zhao, C. Xiao, C. Wang, A. J. Cimaroli, C. R. Grice, M. Yang, Z. Li, C.-S. Jiang, M. Al-Jassim, K. Zhu, M. G. Kanatzidis, G. Fang, Y. Yan, J. Mater. Chem. A 2016, 4, 14276.
[31] D. Koushik, W. J. H. Verhees, Y. Kuang, S. Veenstra, D. Zhang, M. A. Verheijen, M. Creatore, R. E. I. Schropp, Energy Environ. Sci. 2017, 10, 91.
[32] S. Bai, N. Sakai, W. Zhang, Z. Wang, J. T. W. Wang, F. Gao, H. J. Snaith, Chem. Mater. 2017, 29, 462.
[33] S. Colella, E. Mosconi, P. Fedeli, A. Listorti, F. Gazza, F. Orlandi, P. Ferro, T. Besagni, A. Rizzo, G. Calestani, G. Gigli, F. De Angelis, R. Mosca, Chem. Mater. 2013, 25, 4613.
[34] S. T. Williams, F. Zuo, C.-C. Chueh, C.-Y. Liao, P.-W. Liang, A. K. Y. Jen, ACS Nano 2014, 8, 10640.
[35] N. Yantara, F. Yanan, C. Shi, H. A. Dewi, P. P. Boix, S. G. Mhaisalkar, N. Mathews, Chem. Mater. 2015, 27, 2309.
[36] Q. Chen, H. Zhou, Y. Fang, A. Z. Stieg, T. B. Song, H. H. Wang, X. Xu, Y. Liu, S. Lu, J. You, P. Sun, J. McKay, M. S. Goorsky, Y. Yang, Nat. Commun. 2015, 6, 7269.
[37] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. I. Seok, Nano Lett. 2013, 13, 1764.
[38] J. H. Heo, D. H. Song, S. H. Im, Adv. Mater. 2014, 26, 8179.
[39] S. S. Mali, C. S. Shim, C. K. Hong, NPG Asia Mater. 2015, 7, e208.
[40] D. B. Mitzi, C. A. Feild, W. T. A. Harrison, A. M. Guloy, Nature 1994, 369, 467.
[41] N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, H. J. Snaith, Energy Environ. Sci. 2014, 7, 3061.
[42] F. Zuo, S. T. Williams, P.-W. Liang, C.-C. Chueh, C.-Y. Liao, A. K. Y. Jen, Adv. Mater. 2014, 26, 6454.
[43] Y. Li, W. Sun, W. Yan, S. Ye, H. Rao, H. Peng, Z. Zhao, Z. Bian, Z. Liu, H. Zhou, C. Huang, Adv. Energy Mater. 2016, 6, 1601353.
[44] T.-B. Song, T. Yokoyama, S. Aramaki, M. G. Kanatzidis, ACS Energy Lett. 2017, 2, 897.
[45] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Science 2015, 348, 1234.
[46] D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.-P. Correa Baena, J.-D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, A. Hagfeldt, Sci. Adv. 2016, 2, 1.
[47] D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Hörantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, H. J. Snaith, Science 2016, 351, 151.
[48] X. Li, D. Bi, C. Yi, J. D. Decoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, M. Gratzel, Science 2016, 353, 58.
[49] L. K. Ono, S. Wang, Y. Kato, S. R. Raga, Y. Qi, Energy Environ. Sci. 2014, 7, 3989.
[50] W. Ke, D. Zhao, C. R. Grice, A. J. Cimaroli, J. Ge, H. Tao, H. Lei, G. Fang, Y. Yan, J. Mater. Chem. A 2015, 3, 17971.
[51] W. Ke, D. Zhao, C. R. Grice, A. J. Cimaroli, G. Fang, Y. Yan, J. Mater. Chem. A 2015, 3, 23888.
[52] A. Ng, Z. Ren, Q. Shen, S. H. Cheung, H. C. Gokkaya, S. K. So, A. B. Djurišić, Y. Wan, X. Wu, C. Surya, ACS Appl. Mater. Interfaces 2016, 8, 32805.
[53] C. Momblona, L. Gil-Escrig, E. Bandiello, E. M. Hutter, M. Sessolo, K. Lederer, J. Blochwitz-Nimoth, H. J. Bolink, Energy Environ. Sci. 2016, 9, 3456.
[54] S. Yang, W. Fu, Z. Zhang, H. Chen, C.-Z. Li, J. Mater. Chem. A 2017, 5, 11462.
[55] J.-P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. Jesper Jacobsson, M. Gratzel, A. Hagfeldt, Energy Environ. Sci. 2017, 10, 710.
[56] M. Konstantakou, T. Stergiopoulos, J. Mater. Chem. A 2017, 5, 11518.
[57] Z. Song, S. C. Watthage, A. B. Phillips, M. J. Heben, J. Photon. Energy 2016, 6, 022001.
[58] A. Ehtesham, W. Wong, H. Y. Wong, M. Zaman, American Journal of Applied Sciences 2016, 13, 1290.
[59] N.-G. Park, Nano Convergence 2016, 3, 15.
[60] D. Bi, S.-J. Moon, L. Haggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Gratzel, A. Hagfeldt, RSC Adv. 2013, 3, 18762.
[61] Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, Y. Yang, J. Am. Chem. Soc. 2014, 136, 622.
[62] K.-G. Lim, H.-B. Kim, J. Jeong, H. Kim, J. Y. Kim, T.-W. Lee, Adv. Mater. 2014, 26, 6461.
[63] Y. Chen, T. Chen, L. Dai, Adv. Mater. 2015, 27, 1053.
[64] C.-W. Chen, H.-W. Kang, S.-Y. Hsiao, P.-F. Yang, K.-M. Chiang, H.-W. Lin, Adv. Mater. 2014, 26, 6647.
[65] D. Yang, Z. Yang, W. Qin, Y. Zhang, S. Liu, C. Li, J. Mater. Chem. A 2015, 3, 9401.
[66] Y. Li, J. K. Cooper, R. Buonsanti, C. Giannini, Y. Liu, F. M. Toma, I. D. Sharp, J. Phys. Chem. Lett. 2015, 6, 493.
[67] Y. Peng, G. Jing, T. Cui, J. Mater. Chem. A 2015, 3, 12436.
[68] J. Yin, H. Qu, J. Cao, H. Tai, J. Li, N. Zheng, J. Mater. Chem. A 2016, 4, 13203.
[69] J. Mo, C. Zhang, J. Chang, H. Yang, H. Xi, D. Chen, Z. Lin, G. Lu, J. Zhang, Y. Hao, J. Mater. Chem. A 2017, 5, 13032.
[70] J.-W. Lee, D.-J. Seol, A.-N. Cho, N.-G. Park, Adv. Mater. 2014, 26, 4991.
[71] P. Liu, X. Liu, L. Lyu, H. Xie, H. Zhang, D. Niu, H. Huang, C. Bi, Z. Xiao, J. Huang, Y. Gao, Appl. Phys. Lett. 2015, 106, 193903.
[72] Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, Y. Yang, J. Am. Chem. Soc. 2013, 136, 622.
[73] L. K. Ono, M. R. Leyden, S. Wang, Y. Qi, J. Mater. Chem. A 2016, 4, 6693.
[74] M. R. Leyden, M. V. Lee, S. R. Raga, Y. Qi, J. Mater. Chem. A 2015, 3, 16097.
[75] A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, H. Han, Science 2014, 345, 295.
[76] Y. Kaiyu, L. Fushan, Z. Jianhua, V. Chandrasekar Perumal, G. Tailiang, Nanotechnology 2016, 27, 095202.
[77] J. Mao, H. Zhang, H. He, H. Lu, F. Xie, D. Zhang, K. S. Wong, W. C. H. Choy, RSC Adv. 2015, 5, 73760.
[78] H.-Y. Lin, W.-C. Huang, Y.-C. Chen, H.-H. Chou, C.-Y. Hsu, J. T. Lin, H.-W. Lin, Chem. Commun. 2012, 48, 8913.
[79] H.-W. Lin, C.-W. Lu, L.-Y. Lin, Y.-H. Chen, W.-C. Lin, K.-T. Wong, F. Lin, J. Mater. Chem. A 2013, 1, 1770.
[80] Y.-H. Chen, C.-W. Chen, Z.-Y. Huang, K.-T. Wong, L.-Y. Lin, F. Lin, H.-W. Lin, Org. Electron. 2014, 15, 1828.
[81] H.-W. Lin, H.-W. Kang, Z.-Y. Huang, C.-W. Chen, Y.-H. Chen, L.-Y. Lin, F. Lin, K.-T. Wong, Org. Electron. 2012, 13, 1925.
[82] H.-W. Lin, J.-H. Chang, W.-C. Huang, Y.-T. Lin, L.-Y. Lin, F. Lin, K.-T. Wong, H.-F. Wang, R.-M. Ho, H.-F. Meng, J. Mater. Chem. A 2014, 2, 3709.
[83] Q.-K. Wang, R.-B. Wang, P.-F. Shen, C. Li, Y.-Q. Li, L.-J. Liu, S. Duhm, J.-X. Tang, Adv. Mater. Interf. 2015, 2, 1400528.
[84] Z. Yu, L. Sun, Adv. Energy Mater. 2015, 5, 1500213.
[85] W.-Q. Wu, D. Chen, R. A. Caruso, Y.-B. Cheng, J. Mater. Chem. A 2017, 5, 10092.
[86] K. Mahmood, S. Sarwar, M. T. Mehran, RSC Adv. 2017, 7, 17044.
[87] J. You, L. Meng, T. B. Song, T. F. Guo, Y. M. Yang, W. H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, Y. Yang, Nat. Nanotechnol. 2015, 230.
[88] Y. Wu, J. Wang, X. Qiu, R. Yang, H. Lou, X. Bao, Y. Li, ACS Appl. Mater. Interfaces 2016, 8, 12377.
[89] J. R. Harwell, T. K. Baikie, I. D. Baikie, J. L. Payne, C. Ni, J. T. S. Irvine, G. A. Turnbull, I. D. W. Samuel, Phys. Chem. Chem. Phys. 2016, 18, 19738.
[90] M. A. Green, A. Ho-Baillie, H. J. Snaith, Nat. Photonics 2014, 8, 506.
[91] P. Ganesan, K. Fu, P. Gao, I. Raabe, K. Schenk, R. Scopelliti, J. Luo, L. H. Wong, M. Gratzel, M. K. Nazeeruddin, Energy Environ. Sci. 2015, 8, 1986.
[92] M. Li, Z.-K. Wang, Y.-G. Yang, Y. Hu, S.-L. Feng, J.-M. Wang, X.-Y. Gao, L.-S. Liao, Adv. Energy Mater. 2016, 6, 1601156.
[93] J. H. Heo, H. J. Han, D. Kim, T. K. Ahn, S. H. Im, Energy Environ. Sci. 2015, 8, 1602.
[94] F. Wang, H. Yu, H. Xu, N. Zhao, Adv. Funct. Mater. 2015, 25, 1120.
[95] S. Bai, Z. Wu, X. Wu, Y. Jin, N. Zhao, Z. Chen, Q. Mei, X. Wang, Z. Ye, T. Song, R. Liu, S.-t. Lee, B. Sun, Nano Res. 2014, 7, 1749.
[96] S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, C. Huang, Nano Lett. 2015, 15, 3723.
[97] Y. Cheng, Q. D. Yang, J. Xiao, Q. Xue, H. W. Li, Z. Guan, H. L. Yip, S. W. Tsang, ACS Appl. Mater. Interfaces 2015, 7, 19986.
[98] J.-Y. Jeng, Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen, T.-C. Wen, Adv. Mater. 2013, 25, 3727.
[99] J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, Y. Yang, Appl. Phys. Lett. 2014, 105, 183902.
[100] F. Xia, Q. Wu, P. Zhou, Y. Li, X. Chen, Q. Liu, J. Zhu, S. Dai, Y. Lu, S. Yang, ACS Appl. Mater. Interfaces 2015, 7, 13659.
[101] C. Tian, E. Castro, T. Wang, G. Betancourt-Solis, G. Rodriguez, L. Echegoyen, ACS Appl. Mater. Interfaces 2016, 8, 31426.
[102] Z. Wang, D. P. McMeekin, N. Sakai, S. van Reenen, K. Wojciechowski, J. B. Patel, M. B. Johnston, H. J. Snaith, Adv. Mater. 2017, 29, 1604186.
[103] J. M. Ball, M. M. Lee, A. Hey, H. J. Snaith, Energy Environ. Sci. 2013, 6, 1739.
[104] D. Liu, T. L. Kelly, Nat. Photonics 2014, 8, 133.
[105] H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 2014, 345, 542.
[106] W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, Y. Yan, J. Am. Chem. Soc. 2015, 137, 6730.
[107] E. H. Anaraki, A. Kermanpur, L. Steier, K. Domanski, T. Matsui, W. Tress, M. Saliba, A. Abate, M. Gratzel, A. Hagfeldt, J.-P. Correa-Baena, Energy Environ. Sci. 2016, 9, 3128.
[108] Y. Bai, Y. Fang, Y. Deng, Q. Wang, J. Zhao, X. Zheng, Y. Zhang, J. Huang, ChemSusChem 2016, 9, 2686.
[109] S. Gamliel, L. Etgar, RSC Adv. 2014, 4, 29012.
[110] H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, G. Xu, Science 1999, 283, 1900.
[111] N. Prachumrak, S. Pansay, S. Namuangruk, T. Kaewin, S. Jungsuttiwong, T. Sudyoadsuk, V. Promarak, Eur. J. Org. Chem. 2013, 2013, 6619.
[112] Z. Chen, M. G. Debije, T. Debaerdemaeker, P. Osswald, F. Würthner, ChemPhysChem 2004, 5, 137.
[113] F. Wurthner, Chem. Commun. 2004, 1564.
[114] R. T. Weitz, K. Amsharov, U. Zschieschang, E. B. Villas, D. K. Goswami, M. Burghard, H. Dosch, M. Jansen, K. Kern, H. Klauk, J. Am. Chem. Soc. 2008, 130, 4637.
[115] C. B. Nielsen, S. Holliday, H.-Y. Chen, S. J. Cryer, I. McCulloch, Acc. Chem. Res. 2015, 48, 2803.
[116] N. Liang, W. Jiang, J. Hou, Z. Wang, Mater. Chem. Front. 2017, 7, 1291.
[117] H.-C. Chen, C.-P. Hsu, J. N. H. Reek, R. M. Williams, A. M. Brouwer, ChemSusChem 2015, 8, 3639.
[118] S. J. Manning, W. Bogen, L. A. Kelly, J. Org. Chem. 2011, 76, 6007.
[119] L. C. K. Viswanath, J. Bernhardt, K. Kumar Gnanasekaran, C. Want, J. Frank, J. Faulkner, S. Krishnan, Dyes Pigm. 2016, 134, 453.
[120] W. Chen, Q. Zhang, J. Mater. Chem. C 2017, 5, 1275.
[121] J. Seo, S. Park, Y. Chan Kim, N. J. Jeon, J. H. Noh, S. C. Yoon, S. I. Seok, Energy Environ. Sci. 2014, 7, 2642.
[122] B. W. Larson, J. B. Whitaker, X.-B. Wang, A. A. Popov, G. Rumbles, N. Kopidakis, S. H. Strauss, O. V. Boltalina, J. Phys. Chem. C 2013, 117, 14958.
[123] S.-Y. Hsiao, H.-L. Lin, W.-H. Lee, W.-L. Tsai, K.-M. Chiang, W.-Y. Liao, C.-Z. Ren-Wu, C.-Y. Chen, H.-W. Lin, Adv. Mater. 2016, 28, 7013.
[124] W.-H. Lee, C.-Y. Chen, C.-S. Li, S.-Y. Hsiao, W.-L. Tsai, M.-J. Huang, C.-H. Cheng, C.-I. Wu, H.-W. Lin, Nano Energy 2017, 38, 66.
[125] H.-S. Kim, N.-G. Park, J. Phys. Chem. Lett. 2014, 5, 2927.
[126] H.-S. Kim, I.-H. Jang, N. Ahn, M. Choi, A. Guerrero, J. Bisquert, N.-G. Park, J. Phys. Chem. Lett. 2015, 6, 4633.
[127] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Nature 2015, 517, 476.
[128] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Gratzel, Energy Environ. Sci. 2016, 9, 1989.
[129] M. Grätzel, Acc. Chem. Res. 2017, 50, 487.
[130] H. Tan, A. Jain, O. Voznyy, X. Lan, F. P. García de Arquer, J. Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L. N. Quan, Y. Zhao, Z.-H. Lu, Z. Yang, S. Hoogland, E. H. Sargent, Science 2017, 355, 722.
[131] T. Matsui, J.-Y. Seo, M. Saliba, S. M. Zakeeruddin, M. Grätzel, Adv. Mater. 2017, 29, 1606258.
[132] O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, H. J. Bolink, Nat. Photonics 2014, 8, 128.
[133] J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, Y. Yang, ACS Nano 2014, 8, 1674.
[134] M. Yang, T. Zhang, P. Schulz, Z. Li, G. Li, D. H. Kim, N. Guo, J. J. Berry, K. Zhu, Y. Zhao, Nat. Commun. 2016, 7, 12305.
[135] K. Cao, H. Li, S. Liu, J. Cui, Y. Shen, M. Wang, Nanoscale 2016, 8, 8839.
[136] Q. Jing, M. Zhang, X. Huang, X. Ren, P. Wang, Z. Lu, Nanoscale 2017, 9, 7391.
[137] F. Zhang, B. Yang, X. Mao, R. Yang, L. Jiang, Y. Li, J. Xiong, Y. Yang, R. He, W. Deng, K. Han, ACS Appl. Mater. Interfaces 2017, 9, 14827.
[138] L. Gil-Escrig, A. Miquel-Sempere, M. Sessolo, H. J. Bolink, J. Phys. Chem. Lett. 2015, 6, 3743.
[139] M. I. Saidaminov, A. L. Abdelhady, B. Murali, E. Alarousu, V. M. Burlakov, W. Peng, I. Dursun, L. Wang, Y. He, G. Maculan, A. Goriely, T. Wu, O. F. Mohammed, O. M. Bakr, Nat. Commun. 2015, 6, 7586.
[140] B. Saparov, D. B. Mitzi, Chem. Rev. 2016, 116, 4558.
[141] R. Lindblad, D. Bi, B.-w. Park, J. Oscarsson, M. Gorgoi, H. Siegbahn, M. Odelius, E. M. J. Johansson, H. Rensmo, J. Phys. Chem. Lett. 2014, 5, 648.
[142] B. Conings, L. Baeten, C. De Dobbelaere, J. D'Haen, J. Manca, H.-G. Boyen, Adv. Mater. 2014, 26, 2041.
[143] G. Sadoughi, D. E. Starr, E. Handick, S. D. Stranks, M. Gorgoi, R. G. Wilks, M. Bär, H. J. Snaith, ACS Appl. Mater. Interfaces 2015, 7, 13440.
[144] S. R. Raga, M.-C. Jung, M. V. Lee, M. R. Leyden, Y. Kato, Y. Qi, Chem. Mater. 2015, 27, 1597.
[145] B. Wang, K. Young Wong, X. Xiao, T. Chen, Nat. Commun. 2015, 5, 10557.
[146] K. Wojciechowski, T. Leijtens, S. Siprova, C. Schlueter, M. T. Hörantner, J. T.-W. Wang, C.-Z. Li, A. K. Y. Jen, T.-L. Lee, H. J. Snaith, J. Phys. Chem. Lett. 2015, 6, 2399.
[147] A. B. Walker, L. M. Peter, K. Lobato, P. J. Cameron, J. Phys. Chem. B 2006, 110, 25504.
[148] B. Yang, Y. Yuan, J. Huang, J. Phys. Chem. C 2014, 118, 5196.
[149] A. Pockett, G. E. Eperon, T. Peltola, H. J. Snaith, A. Walker, L. M. Peter, P. J. Cameron, J. Phys. Chem. C 2015, 119, 3456.
[150] A. V. Nenashev, M. Wiemer, A. V. Dvurechenskii, F. Gebhard, M. Koch, S. D. Baranovskii, Appl. Phys. Lett. 2016, 109, 033301.
[151] V. Roiati, S. Colella, G. Lerario, L. De Marco, A. Rizzo, A. Listorti, G. Gigli, Energy Environ. Sci. 2014, 7, 1889.
[152] Y. Li, L. Meng, Y. Yang, G. Xu, Z. Hong, Q. Chen, J. You, G. Li, Y. Yang, Y. Li, Nat. Commun. 2016, 7, 10214.
[153] C.-W. Chen, S.-Y. Hsiao, C.-Y. Chen, H.-W. Kang, Z.-Y. Huang, H.-W. Lin, J. Mater. Chem. A 2015, 3, 9152.