簡易檢索 / 詳目顯示

研究生: 郭庭榕
Kuo, Ting-Jung
論文名稱: The Gradient Estimate And Harnack Inequality In Pseudohermitian Geometry
擬埃爾米特流型上的梯度估計與哈納克不等式及其應用
指導教授: 張樹城
蔡東和
口試委員: 張樹城
蔡東和
宋瓊珠
吳進通
陳瑞堂
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 79
中文關鍵詞: CR流型梯度估計擬埃爾米特幾何哈納克不等式
外文關鍵詞: CR manifold, Gradient estimate, Pseudohermitian geometry, Harnack inequality
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract
    In this thesis, we consider the gradient estimates in pseudohermitian geometry. In chapter 1, we frst give an introduction to pseudohermitian manifolds and derive some Bochner-Type estimates for the later use.

    In chapter 2, we introduce some results about the CR sub-Laplacian comparison property.
    Secondly, by modifying method of Yau’s gradient estimate and using the CR sub-Laplacian comparison property, we are able to derive the gradient estimate for positive pseudoharmonic functions on a complete noncompact pseudohermitian (2□□+ 1)-manofold which is served as the CR version of Yau’s gradient estimate. As an application of the gradient estimate, we derive the CR analogue of Liouville-type Theorem. In particular, the CR analogue of Liouville-type Theorem holds on the standard Heisenberg (2□□+ 1)-manifolds.

    In chapter 3, we introduce a third order operator □□and the CR Paneitz operator □0. Then
    we derive another CR Bochner type formula which involves □. We use two kinds of CR Borchner formulae to derive two types of CR Li-Yau gradient estimates on a closed pseudohermitian 3-manifold. As an application, we .rst get a subgradient estimate of logarithm of the positive solution of CR heat equation. Secondly, we have the Harnack inequality and upper bound estimate for the heat kernel. Finally, we obtain Perelman-type entropy formulae for the CR heat equation.

    In chapter 4, we introduce the CR Yamabe flow and present the evolution equations under the CR Yamabe flow. Then we prove the CR Li-Yau-Hamilton gradient estimate for CR Yamabe flow. As an application, we are able to get the Harnack inequality for the CR Yamabe flow.


    Contents Contents ii 1 Preliminary 1 1.1 Pesudohermitian Manifold . . . . . . . . . . . . . . . . 1 1.2 The CR Bochner-Type Estimate . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 CR Yau’s Gradient Estimate for Positive Pseudoharmonic Functions 9 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 CR Sub-Laplacian Comparison Property . . . . . . . . . . . . . . . . . . . . 11 2.3 CR Yau’s Gradient Estimate and Liouville-type Theorem . . . . . . . . . . . 12 2.4 The Proofs of CR Yau’s Gradient Estimate . . . . . . . . . . . . . . . . . . . 16 3 CR Li-Yau Gradient Estimate for Positive Solutions of CR Heat Equation 33 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 CR Paneitz Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3 Li-Yau Subgradient Estimate and CR Harnack Inequality . . . . . . . . . . . 38 3.4 The Proof of Li-Yau Subgradient Estimate and CR Harnack Inequality . . . 44 3.5 Perelman-Type Entropy Formulae . . . . . . . . . . . . . . . . . . . . . . . . 59 4 CR Li-Yau-Hamilton Gradient Estimate for Tanaka-Webster Scalar Cur- vature under CR Yamabe Flow 61 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2 Evolution Equation Under CR Yamabe Flow . . . . . . . . . . . . . . . . . . 63 4.3 The Proof of Li-Yau-Hamilton Inequality for the CR Yamabe Flow . . . . . 68 Bibliography 75

    Reference
    1. R. Beals, B. Gaveau and P.C. Greiner, Hamiltonian-Jacobi theory and the heat kernel on Heisenberg groups, J. Math. Pures Appl., 79(2000), 633-689.
    2. S.-C. Chang and J.-H. Cheng, The Harnack estimate for the Yamabe flow on CR manifolds of dimension 3, AGAG 21 (2002), 111-121.
    3. S.-C. Chang and H.-L. Chiu, Nonnegativity of CR Paneitz operator and its Application to the CR Obata's Theorem in a Pseudohermitian (2n+1)-Manifold, JGA, vol 19 (2009), 261-287.
    4. S.-C. Chang and H.-L. Chiu, On the CR Analogue of Obata's Theorem in a Pseudohermitian 3-Manifold, Math. Ann. vol 345, no. 1 (2009), 33-51.
    5. S.-C. Chang, T.-H. Chang, T.-J. Kuo and C.-T. Wu, The CR Reilly's Formula and Dirichlet Eigenvalue Estimates in a Pseudohermitian (2n+1)-manifold, submitted 2010.
    6. Jianguo Cao, S.-C. Chang and Jingzhi Tie, The Sub-Laplacian Comparison Theorem in a Complete Pseudohermitian 3- Manifold, preprint, 2010.
    7. S.-C. Chang, Jih-Hsin Cheng and C.-T. Wu, Entropy Formulas and its Monotonicity Properties under Coupled Torsion Flow in a Closed Pseudohermitian 3-manifold, in preparation.
    8. S-C Chang, H.-L. Chiu and C-T Wu, The Li-Yau-Hamilton inequality for Yamabe flow on a closed CR 3-manifold, Transactions of AMS, Vol 362 (2010), 1681--1698.
    9. W.-L. Chow : Uber System Von Lineaaren Partiellen Differentialgleichungen erster Orduung,. Math. Ann. 117 (1939), 98-105.
    10. S.-C. Chang and T.-J. Kuo, On the Li-Yau-Hamilton Inequality in a closed Pseudohermitian 3-Manifold, preprint.
    11. S.-C. Chang, T.-J. Kuo and S.-H. Lai, Li-Yau Gradient Estimate and Entropy Formulae for the CR heat equation in a Closed Pseudohermitian 3-manifold, to appear in JDG.
    12. W. S. Cohn and G. Lu, Best Constants for Moser-Trudinger Inequalities on the Heisenberg Group, Indiana Univ. Math. J. 50 (2001), 1567-1591.
    13. J.-T. Chen, T. Saotome and C.-T. Wu, The CR Almost Schur Lemma and Lee Conjecture, preprint.
    14. S-C Chang, Jingzhu Tie and C.-T. Wu, Subgradient Estimate and Liouville-type Theorems for the CR Heat Equation on Heisenberg groups Hⁿ, Asian J. Math., Vol. 14, No. 1 (2010), 041--072.
    15. S.-C. Chang and C.-T. Wu, The Diameter Estimate and Its Application to CR Obata's Theorem on Closed Pseudohermitian (2n+1)-Manifolds, to appear in Transactions of AMS.
    16. H.-D. Cao and S.-T. Yau, Gradient Estimates, Harnack Inequalities and Estimates for Heat Kernels of the Sum of Squares of Vector Fields, Math. Z. 211 (1992), 485-504.
    17. S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), 333-354.
    18. C. Fefferman and K. Hirachi, Ambient Metric Construction of Q-Curvature in Conformal and CR Geometries, Math. Res. Lett., 10, No. 5-6 (2003), 819-831.
    19. A. R. Gover and C. R. Graham, CR Invariant Powers of the Sub-Laplacian, J. Reine Angew. Math. 583 (2005), 1-27.
    20. C. R. Graham and J. M. Lee, Smooth Solutions of Degenerate Laplacians on Strictly Pseudoconvex Domains, Duke Math. J., 57 (1988), 697-720.
    21. A. Greenleaf: The first eigenvalue of a Sublaplacian on a Pseudohermitian manifold. Comm. Part. Diff. Equ. 10(2) (1985), no.3 191--217.
    22. K. Hirachi, Scalar Pseudo-hermitian Invariants and the Szegö Kernel on 3-dimensional CR Manifolds, Lecture Notes in Pure and Appl. Math. 143, pp. 67-76, Dekker, 1992.
    23. R. S. Hamilton, Three-Manifolds with Positive Ricci Curvature, J. Diff. Geom. 17 (1982), 255-306.
    24. R. S. Hamilton, Non-singular Solutions of the Ricci Flow on Three-manifolds, Comm. Anal. Geom. 7 (1999), no. 4, 695-729.
    25. R. S. Hamilton, The Formation of Singularities in the Ricci Flow. Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), 7-136, Internat. Press, Cambridge, MA, 1995.
    26. R. S. Hamilton, Four-manifolds with Positive Isotropic Curvature, Comm. Anal. Geom. 5 (1997), no. 1, 1-92.
    27. L. Hormander, Hypoelliptic Second Order Differential Equations, Acta Math. 119 (1967), 147-171.
    28. D. Jerison and A. Sánchez-Calle, Estimates for the Heat Kernel for the Sum of Squares of Vector Fields, Indiana J. Math. 35 (1986), 835-854.
    29. A. Koranyi and N. Stanton, Liouville Type Theorems for Some Complex Hypoelliptic Operators, J. Funct. Anal. 60 (1985), 370-377.
    30. J. M. Lee, Pseudo-Einstein Structure on CR Manifolds, Amer. J. Math. 110 (1988), 157-178.
    31. J. M. Lee, The Fefferman Metric and Pseudohermitian Invariants, Trans. A.M.S. 296 (1986), 411-429.
    32. P. Li, Lecture on Harmonic Functions, UCI, 2004.
    33. P. Li and S.-T. Yau, On the Parabolic Kernel of the Schrődinger Operator, Acta Math. 156 (1985), 153-201.
    34. P. Li and S.-T. Yau, Estimates of Eigenvalues of a Compact Riemannian Manifold, AMS Proc. Symp. in Pure Math. 36 (1980), 205-239.
    35. A. Nagel, Analysis and Geometry on Carnot-Caratheodory Spaces, 2003.
    36. J. Nash, Continuity of Solutions of Parabolic and Elliptic Equations, Am. J. Math., 80 (1958), 931-954.
    37. Lei Ni, The entropy formula for the linear heat equation, J. Geom. Analysis 14 (2004), no. 1, 85-98.
    38. S. Paneitz, A Quartic Conformally Covariant Differential Operator for Arbitrary Pseudo-Riemannian Manifolds, preprint, 1983.
    39. G. Perelman, The Entropy Formula for the Ricci Flow and its Geometric Applications. ArXiv: Math. DG/0211159.
    40. G. Perelman, The Ricci Flow with Surgery on Three-manifolds, ArXiv:Math.DG/0303109.
    41. G. Perelman, Finite Extinction Time for the Solutions to the Ricci Flow on Certain Three-manifolds, ArXiv: Math.DG/0307245.
    42. R. Strichartz, Sub-Riemannian geometry, J. Differential Geom. 24 (1986) 221--263.
    43. A. Sánchez-Calle, Fundamental Solutions and Geometry of the Sum of Squares of Vector Fields, Invent. Math. 78 (1984), 143-160
    44. R. Schoen and S.-T. Yau, Lectures on Differential Geometry, International Press, 1994.
    45. J.-P. Wang, Private communication, 2005.
    46. S. -T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228.
    47. S. -T. Yau, Seminar on Differential Geometry, edited, Annals of Math. Studies 102, Princeton, New Jersey, 1982.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE