簡易檢索 / 詳目顯示

研究生: 胡智威
Chih-Wei Hu
論文名稱: 以有機金屬化學氣相磊晶法研製高效率1.3 與1.55 微米掩埋異質結構磷砷化銦鎵應力型多重量子井雷射二極體
High Performance 1.3 and 1.55 μm InGaAsP/InP Strained Multiple Quantum Well Buried Heterostructure Lasers fabricated by MOCVD
指導教授: 吳孟奇
Meng-Chyi Wu
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 123
中文關鍵詞: 雷射二極體
外文關鍵詞: laser diode
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據2002年IEEE 802.3ae 10 Gigabit Ethernet 的規格,利用光纖作為網路傳輸介質已成必要的選擇,為增加光纖網路通道之容量,短距離的光纖到家服務與中、長距離之波長多段分工 (Wavelength Division Multiplexing, WDM )網路技術已廣泛採用,因此免冷卻高效能之費比-白洛(Fabry-Perot)與分佈回授型(DFB)單波長的半導體雷射光源將是目前開發元組件時重要的切入點。
    本論文提出以自我對準技術實施開放式再磊晶成長與選擇性有機金屬化學氣相磊晶成長方式分別製作1.55 與1.3 微米掩埋異質結構磷砷化銦鎵應力型多重量子井雷射二極體,以避免傳統脊狀波導 (ridge waveguide)雷射無法抑制主動區橫向漏電流之缺點進而改善元件熱衰退與可靠度等等之問題。 在1.55微米波長方面,本文以未摻雜之磷化銦利用自我對準與單次再磊晶成長技術成功開發出高效率之掩埋異質結構磷砷化銦鎵應力型多重量子井雷射二極體,此法以高阻值之磷化銦掩埋磷砷化銦鎵主動區以達到限制電子與光場雙方面的橫向溢散。經實驗證明此雷射在室溫下連續波(Continuous-Wave)操作下其內部量子效率可高達81%且臨界電流(Ith)為3.4 mA,特徵溫度為72 K且雷射之最高操作溫度為125℃。
    另外,以選擇性有機金屬化學氣相磊晶成長方式製作1.3微米之掩埋異質結構雷射二極體方面,為避免磊晶條件之變異,本實驗以二氧化矽當作磊晶成長之遮罩且以96%之開放空間成長主動區寬度為3微米之雷射二極體。經由光激發螢光(PL)系統的驗證下主動區光譜之半高寬僅有47 meV。以此法製作之雷射二極體在300微米之共振腔長度下其臨界電流僅有6.8 mA 且雷射外部之差分量子效率高達 0.45 mW/mA,此雷射在室溫以80 mA電流注入下輸出之光功率高達30 mW,最高之雷射操作溫度為120℃,且經由85℃可靠度測試下此元件之壽命可高達10年。在高頻小信號驗證下此雷射之 3dB頻寬可達11.4 GHz。在位元傳遞速率為10Gb/s的測試下,即使操作溫度高達85℃,接收端所測得的眼圖仍能呈現符合規格之對稱且張開度大的影像。經由以上結果可以確認以選擇性有機金屬化學氣相磊晶成長方式製作之掩埋異質結構雷射二極體完全符合IEEE 802.3ae 10 Gigabit Ethernet 的規格。
    最後,在單波長的半導體雷射方面,本論文率先提出以鐵元素摻雜高電阻值之InGaAsP/InP 複合式光柵以製作複式耦合分佈回授型雷射。複式耦合電流阻隔式光柵分佈回授型雷射除了增益調變觀觀念外,還有著傳統之折射率調變觀念,因此可有效的增加旁模抑制比,提升波長選擇的能力。在元件製作方面配合上自我對準開放式再磊晶成長技術的實施,經實驗證明此雷射在室溫下連續波操作下其臨界電流(Ith)為5.3 mA,3dB頻寬可達11.8 GHz (40 mA 值流準位)。室溫下此雷射外部之差分量子效率高達 0.41 mW/mA且20~80℃之效率衰退僅有1dB,元件在室溫以100 mA電流注入下輸出之光功率高達36 mW,最高之雷射操作溫度為125℃。在兩倍臨界電流(10.5 mA)操作下,元件之波長拒斥比(SMSR)高達42dB且環境溫度升高至90℃測量下最高之SMSR也可達48.5dB。經由雷射波長隨環境溫度與變電流操作之紅移速率分析下,以自我對準開放式再磊晶成長技術製作出的掩埋異質結構式雷射二極體,與傳統之脊狀波導雷射相比此元件之自我散熱能力增加了18%且在85℃, 5 mW光功率輸出之老化測試下其壽命高達12.5年。


    The advent of high-speed Internet has seen renewed interest in fiber to the home (FTTH) systems due to the potentially greater economic revenues. Nowadays, the deployment of optical networks in long-haul networks has been promoted into SONET OC-192 (10 Gbit/S) standard for enhancing data transmission capacity and the technical development of diode lasers focuses on low cost and compact-size integration technology.
    In general, the performance of these conventional InGaAsP/InP 1.3 and 1.55 µm wavelength laser diode is limited by: (1) leakage currents especially at elevated temperatures; (2) thermal saturation; (3) long-term reliability; and (4) the strongly temperature-dependent optical gain and loss in the InGaAsP/InP material.
    There are two alternative methods to promote the structure and the performance of narrow-stripe InP-based lasers for wide temperature range application: the buried heterostructures (BH) and selective area metalorganic vapor phase epitaxy technique. In this dissertation we first describe the InGaAsP BH laser diodes fabricated by single-step MOCVD regrowth and self-aligned technique. A simple method to fabricate the high performance 1.55-μm InGaAsP/InP BH LDs with an intrinsic InP current blocking layer by single-step MOCVD regrowth and self-aligned technique. The method provides a high uniformity and high reproducibility of LD fabrication on a large size wafer. The BH LDs were buried by the intrinsic InP layer which used as the current blocking layer as well as a carrier and optical confinement layer and have a calculated internal quantum efficiency of 81%, an internal loss of 21.5 cm-1. With an as-cleaved front facet and a high reflectivity coating (~92%) was applied to the rear facet. The threshold current of BH LDs can be reduced to 3.4 mA at 20℃, 19 mA at 100℃, an increase of maximum operation temperature up to 125℃, and a characteristic temperature of 72 K in 20-60℃. The BH LDs with an as-cleaved front facet and a high reflectivity coating (~92%) applied to the rear facet can increase the maximum operation temperature up to 125℃ and have a light output power exceeded 10 mW at 80 mA and 100℃. These LD characteristics are comparable to those BH LDs with conventionally Fe-doped or p/n/p InP embedding layers as the current-blocking structure.
    In chapter 5, we next demonstrate the excellent index-guided 1.3 μm InGaAsP strain-compensated multi-quantum- well BH LDs grown by selective area metalorganic chemical vapor epitaxty (SA-MOCVD) on a patterned InP substrate. The photoluminescence (PL) of SCMQW active region grown on the patterned grooves has a narrow full width at half maximum of ~47 meV. These LDs grown on a patterned InP substrate show a low threshold current of 6.8 mA and a high light output power of 30 mW at 80 mA, a high slope quantum efficiency of 0.45 mW/mA, and a maximum operating temperature is 120℃with a characteristic temperature of 72 K in 20-80℃. The 3-dB modulation bandwidth of these LDs can be extended as far as 11.4 GHz under a bias level of 40 mA, and back-to-back test show a clear and symmetric eye diagram at 10 Gb/s with PRBS of 231-1 word length and a peak-to-peak voltage of 1.08 V at 85℃. From the accelerated aging test, the median lifetime for the LDs operating at 85℃ and 5mW is estimated to be longer than 9 x 104 hrs or 10 years.
    Throughout the chapter 6, we highlight performance advantages of 1.3-µm complex-coupled distributed feedback (CC-DFB) buried heterostructure (BH) laser diodes (LDs) with Fe-doped InGaAsP/InP hybrid grating layers. High optical coupling coefficient and eminent current confining ability are accomplished by combining the Fe-doped InGaAsP/InP current-blocking-grating (CBG) layers to provide both the index and gain distributed-feedback coupling coefficients. Besides, the narrow-stripe BH LDs are implemented by burying the active region with a Fe-doped InP current-blocking layer during the epitaxial regrowth. The fabricated CBG CC-DFB BH LDs at 20℃ shows a low threshold current of 5.3 mA, a maximum light output power of 36 mW at 100 mA, a high slope efficiency of 0.41 mW/mA. In addition, these LDs exhibit a maximum operation temperature of 125℃, an extremely low threshold current of 15.8 mA at 90℃, a small variation in slope efficient of only -1 dB at the temperature increased from 20 to 80℃, and a characteristic temperature of 70 and 58 K between 20 and 70℃ and 70 and 120℃, respectively. The LDs measured at a drive current of 2 × Ith exhibits a SMSR of approximately 42 dB at 10.5 mA, and increases to 45 dB above 15 mA, and stay stably in the same DFB mode with a high SMSR even at high temperatures. The analysis of wavelength shift with injected current demonstrates that the thermal dissipation capability of CBG CC-DFB BH LDs increases about 18%, which is attributed to the low thermal impedance of the Fe-doped InP buried layer. Furthermore, these 1.3 μm CBG CC-DFB BH LDs exhibit a high-speed characteristic up to 11.8 GHz at room temperature and an estimated median lifetime of more than 1.1 × 105 hrs or 12.5 years at 5 mW and 85℃. These excellent characteristics at high temperatures are achieved and the laser is expected to be well suited for 10-gigabit Ethernet applications.

    Chinese Abstract I English Abstract IV Contents VIII Figure Captions XI Chapter 1 Introduction 1 1.1 Conventional InGaAsP/InP multi-quantum-well (MQW) Fabry-Perot lasers for optical communication 2 1.2 Graded-index separated-confinement-heterostructure strained InGaAsP MQW ridge waveguide laser diodes 3 1.3 InGaAsP/InP SCH MQW buried heterostructure laser diodes 5 1.4 Selective area MOCVD growth of InGaAsP/InP BH laser diodes 6 1.5 Single-mode InGaAsP/InP based DFB laser and long wavelength vertical-cavity surface-emitting laser (VCSEL) 7 Chapter 2 Theoretical Fundamentals 18 2.1 Fundamental issues of diode laser 18 2.1.1 Lasing conditions of ridge waveguide Fabry-Perot LDs 18 2.1.2 Rate equations of the semiconductor laser 20 2.2 Fundamental of the InGaAsP/InP long wavelength strained quantum well lasers 22 2.2.1 Calculation Bandgap of In1-xGaxAsyP1-y 22 2.2.2 The injected current density and material gain of In1-xGaxAsyP1-y MQW diode lasers 25 2.2.3 Auger recombination in a quantum well 26 2.3 Dynamic performance analysis of diode laser from the single mode rate equations 28 Chapter 3 Linear GRINSCH 1.55 μm InGaAsP/InP SMQW laser diode grown by substrate temperature control 35 3.1 Introduction 35 3.2 Epitaxial growth and material characterization 36 3.3 Fabrication and characterization of LDs 38 3.4 Conclusions 40 Chapter 4 High Performance 1.55-μm InGaAsP BH Laser Diodes Fabricated by Single-Step MOCVD Regrowth and Self-Aligned Technique 49 4.1 Introduction 49 4.2 Experimental 50 4.3 Results and discussion 51 4.4 Conclusions 55 Chapter 5 High-Speed and Uncooled Operation of 1.3 μm InGaAsP Strain-Compensated MQW BH Lasers Fabricated on Patterned InP Substrates 67 5.1 Introduction 67 5.2 Epitaxial growth and device fabrication 68 5.3 Device characteristics 70 5.4 Conclusions 73 Chapter 6 High-Reliable and High-Speed 1.3 µm Complex-Coupled Distributed Feedback Buried-Heterostructure Laser Diodes with Fe-Doped InGaAsP/InP Hybrid Grating Layers Grown by MOCVD 83 6.1 Introduction 83 6.2 Device structure and fabrication 84 6.3 Results and discussion 85 6.4 Conclusions 89 Chapter 7 Future works 100 7.1 1.55-□m resonant-cavity light-emitting diodes and vertical cavity surface emitting lasers 100 References 110 Publication List 121

    [1] N. Andersen, “Broadband loop: A full-service access network for residential and small business users,” IEEE Commun. Mag., vol. 35, pp. 88–93, Dec. 1997
    [2] M. O. V. Deventer, Y. M. V. Dam, P. J. M. Peters, and A. J. Phillips, “Evolutional phases to an ultra-broadband access network: Results from ACTS-PLANET,” IEEE Commun. Mag., vol. 35, pp. 72–77, Dec. 1997.
    [3] G. Keiser, Optical Fiber Communications. Singapore: McGraw-Hill, 2000.
    [4] E. P. O’Reilly and M. Silver, “Temperature sensitivity and high temperature operation of long wavelength semiconductor lasers,” Appl. Phys. Lett., vol. 63, pp. 3318–3320, 1993.
    [5] J. O’Gorman, A. F. J. Levi, T. Tanbun-Ek, D. L. Coblentz, and R. A. Logan, “Temperature dependence of long wavelength semiconductor lasers,” Appl. Phys. Lett., vol. 60, pp. 1058–1060, 1992.
    [6] C. Silfvenius, G. Landgren, and S. Marcinkevicius, “Hole distribution in InGaAsP 1.3 µm multiple-quantum-well laser structures with different hole confinement energies,” IEEE J. Quantum Electron., vol. 35, pp. 603–607, 1999.
    [7] Y. Q. Chen, and A. Z. Li, “Band-structure and optical gain for InAsP/In(GaAs)P MQW laser structures,” J. Crystal Growth., vol. 227, pp. 1171–1176, 2001
    [8] W. T. Tsang, M. C. Wu, T. Tanbun-Ek, R. A. Logan, S. N. Chu, and A. M. Sergent, “Low threshold and high power output 1.5 µm InGaAs/InGaAsP separate confinement multiple quantum well laser grown by chemical beam epitaxy,” Appl. Phys. Lett., vol. 57, pp. 2065–2067, 1990.
    [9] T. Tanbun-Ek, R. A. Logan, H. Temkin, K. Berthold, A. F. J. Levi, and S. N. G. Chu, “Very low threshold InGaAs/InGaAsP gradedindex separate confinement heterostructure quantum well lasers by atmospheric pressure metal organic vapor phase epitaxy,” Appl. Phys. Lett., vol. 55, pp. 2283–2285, 1989.
    [10] A. Kasukawa, I. J. Murgatroyd, Y. Imajo, T. Namegawa, H. Okamoto, and S. Kashima, “1.5 µm GaInAs/GaInAsP graded-index separate confinement heterostructure multiple quantum well (GRIN-SCHMQW) laser diodes grown by metal organic chemical vapor deposition (MOCVD),” Electron. Lett., vol. 25, pp. 659–661, 1989.
    [11] J. S. Osinski, P. Grodzinski, Y. Zao, and P. D. Dapkus, “Threshold current analysis of compressive strain (0–1.8%) in low-threshold, long wavelength quantum well lasers,” IEEE J. Quantum Electron., vol. 29, pp. 1576–1585, 1993.
    [12]A. Mathur and P. D. Dapkus, “Fabrication, characterization, and analysisof low threshold current density 1.55-µm-strained quantum-well lasers,” IEEE J. Quantum Electron., vol. 32, pp. 222–226, 1996.
    [13] L. Shterengas, R. Menna,W. Trussell, D. Donetsky, G. Belenky, J. Connolly, and D. Garbuzov, “Effect of heterobarrier leakage on the performance of high-power 1.5 µm InGaAsP multi-quantum-well lasers,” J. Appl. Phys., vol. 88, pp. 2211–2214, 2000.
    [14] P. M. Smowton and P. Blood, “The differential efficiency of quantum-well lasers,” IEEE J. Select Topics Quantum Elctron., vol. 3, pp. 491–498, Apr. 1997.
    [15] K. Takemasa, T. Munakata, M. Kogayashi, H. Wada, and T. Kamijoh, “1.3-µm AlGaInAs-AlGaInAs strained multiple-quantum-well lasers with a p-AlInAs electron stopper laser,” IEEE Photon. Technol. Lett., vol. 10, pp. 495–497, Apr. 1998.
    [16]K. Uomi, T. Tsuchiya, M. Komori, A. Oka, T. Kawano, and A. Ohishi, “Ultra-low threshold 1.3-µm InGaAsP-InP compressively-strained multiquantumwell monolithic laser array for parallel high-density optical interconnects,” IEEE J. Select. Topics Quantum Electron., vol. 1, pp. 203–210, June 1995.
    [17]T. Higashi, T. Takeuchi, K. Morito, M. Matsuda, and H. Soda, “Hightemperature CW operation of InGaAsP-InP semi-insulating buried heterostructure lasers using reactive ion etching technique,” IEEE Photon. Technol. Lett., vol. 7, pp. 828–829, Aug. 1995.
    [18]K. Takemasa, M. Kubota, T. Munakata, and H. Wada, “1.3-µm AlGaInAs buried-heterostrucutre lasers,” IEEE Photon. Technol. Lett., vol. 11, pp. 949–951, 1999.
    [19] W. Qiu, W. Wang, J. Dong, F. Zhou, and J. Zhang“Selective-area MOCVD growth for distributed feedback lasers integrated with vertically tapered self-aligned waveguide,” J. Cryt. Growth., vol. 250, pp. 583–587, 2003
    [20]S. Sudo,Y.Yokoyama, T. Nakazaki, K. Mori,K.Kudo, M.Yamaguchi, and T. Sasaki, “Growth pressure dependence of neighboringmask interference in densely arrayed narrow-stripe selective MOVPE for integrated photonic devices,” J. Cryst. Growth, vol. 221, no. 1–4, pp. 189–195, Dec. 2000.
    [21] H. Oohashi, S. Seki, T. Hirono, H. Sugiura, T. Amano, M. Ueki, J. Nakano, M. Yamamoto, Y. Tohmori, M. Fukuda, and K. Yokoyama, “High-power and high-efficiency 1.3 µm InAsP compressively-strained MQW lasers at high temperatures,” Electron. Lett., vol. 31, no. 7, pp. 556–557, 1995
    [22] T. Higashi, T. Takeuchi, K. Morito, M. Matsuda, and H. Soda, “High-temperature semi-insulating CW operation of InGaAsP-InP buried heterostructure lasers using reactive ion-etching technique,” IEEE Photon. Technol. Lett., vol. 7, pp. 828–829, 1995.
    [23] T. Tanbun-Ek, P. F. Sciortino, Jr., A. M. Sergent, K. W. Wecht, P. Wisk, Y. K. Chen, C. G. Bethea, and S. K. Sputz, “DFB lasers integrated with Mach-Zehnder optical modulator fabricated by selective area growth MOVPE technique,” IEEE Photon. Technol. Lett., vol. 7, pp. 1019-1021, 1995.
    [24] Y. Dong, Y. L. Okuno, and U. K. Mishra, “MOCVD selective growth of InP through narrow openings and its application to InP HBT extrinsic base regrowth,” J. Cryst. Growth, vol. 260, pp. 316-321, 2003.
    [25] J. H. Kim, S. K. An, S. J. Lee, J. C. Bae, Y. K. Choi, and T. H. Hong, “1.55 μm InGaAsP/InP tapered stripe superluminescent diodes with potential optical sensor system applications,” J. optics & laser technology., Vol. 36, pp. 255-258, 2004.
    [26] Q. Zhao, J. Q. Pan, J. Zhang, H. L. Zhu, and W. Wang, “ High-performance EML grown on taper-masked pattern substrates by ultra-low-pressure MOCVD,” J. Cryst. Growth, vol. 288, pp. 27-31, 2006.
    [27] C. Kazmierski, D. Robein, D. Mathoorasing, A. Ougazzaden, and M. Filoche, “1.5 µm DFB lasers with new current-induced gain gratings,” IEEE J. Selected Topics Quantum Electron., vol. 1, pp. 371-374, 1995.
    [28]H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys., vol. 18, pp. 2329–2330 (1979).
    [29]F. Koyama, S. Kinoshita, and K. Iga, “Room-temperature cw operation of GaAs vertical cavity surface-emitting laser,” IEICE Trans., vol. E47, pp. 1089–1090 (1988).
    [30]F. Koyama, S. Kinoshita, and K. Iga, “Room-temperature continuous wave lasing characteristics of a GaAs vertical cavity surface-emitting laser,” Appl. Phys. Lett., vol. 55, pp. 221–222 (1989).
    [31] L. A. Coldren, S. W. Corzine, in Diode Lasers and Photonic Integrated Circuits, New York: Wiley, 1995.
    [32] Eli Kapon, in Semiconductor Lasers I: Fundamentals, Academic Press, 1998
    [33] Waynant, R.W., Ediger, M.N. in Electro-Handbook (2nd Edition) (McGraw-Hill, 2000)
    [34] K. Nakahara, E. Nomoto, T. Tsuchiya, Y. Katou, R. Kaneko, A. Taike,“A 4 km transmission at 10-Gb/s operation with wide temperature range in 1.3-µm InGaAlAs MQW FP lasers,” Digital Object Identifier 10.1109/ISLC, pp. 59-60, 2002
    [35] J. O’Gorman, A. F. J. Levi, T. Tanbun-Ek, D. L. Coblentz, and R. A. Logan, “Temperature dependence of long wavelength semiconductor lasers,” Appl. Phys. Lett., vol. 60, pp. 1058–1060, 1992.
    [36] C. Silfvenius, G. Landgren, and S. Marcinkevicius, “Hole distribution in InGaAsP 1.3 µm multiple-quantum-well laser structures with different hole confinement energies,” IEEE J. Quantum Electron., vol. 35, pp. 603–607, 1999.
    [37] S. L. Chuang, Physics of Optoelectronic Devices. New York: Wiley, 1995.
    [38] K. H. Hellwege, Ed., Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology. Berlin, Germany: Springer, 1982, new series, group III, 17a; groups III–V 22a, Berlin: Springer, 1986
    [39] D. A. Broido and L. J. Sham, “Effective masses of holes at GaAs -Al-GaAs heterojunctions,” Phys. Rev. B., vol. 31, pp. 888–892, 1985.
    [40] J. M. Luttinger andW.Kohn, “Motion of electrons and holes in perturbed periodic fields,” Phys. Rev., vol. 97, pp. 869–883, 1955.
    [41] D. Ahn, S. L. Chuang, and Y. C. Chang, “Valence-band mixing effects on the gain and the refractive index change of quantum-well lasers,” J. Appl. Phys., vol. 64, pp. 4056–4064, 1988.
    [42] J. Hader, S.W. Koch, J. V. Moloney, and E. P. O’Reilly, “Gain in 1.3 µm materials: GaInAsN and InGaAsP semiconductor quantum-well lasers,” Appl. Phys. Lett., vol. 77, pp. 630–632, 2000.
    [43] G. Lasher and F. Stern, “Spontaneous and stimulated recombination radiation in semiconductor,” Phys. Rev. A, vol. 133, pp. 553–565, 1964.
    [44] C. S. Chang, S. L. Chuang, J. Minch, W. Fang, Y. K. Chen, and T. Tanbun-Ek, “Amplified spontaneous emission spectroscopy in strained quantum-well lasers,” IEEE J. Select. Topics Quantum Electron., vol. 1, pp. 1100–1107, 1995.
    [45] J. Wang, P. v. Allmen, J. P. Leburton, and K. J. Linden, “Auger recombination in long-wavelength strained-layer quantum-well structures,” IEEE J. Quantum Electron., vol. 31, pp. 864–875, 1995.
    [46] G. Morthier, “Design and optimization of strained-layer multi quantum -well lasers for high-speed analog communication,” IEEE J. Quantum Electron., 30, 1520–7, 1994.
    [47] R. Nagarajan, T. Fukushima, M. Ishikawa, J. E. Bowers, R. S. Geels, and L. A. Coldren, “Transport limits in high-speed quantum-well lasers: experiment and theory,” IEEE Photon. Technol. Lett., vol. 4, pp. 121–123, 1992.
    [48]P. J. A. Thijs, “High-performance 1.5 μm wavelength InGaAs-InGaAsP strained Quantum well lasers and amplifiers,” IEEE J. Quantum Electron., Vol. 27, NO.6, pp.1426-1439, JUNE 1991.
    [49]P. J. A. Thijs, “Progress in long-wavelength strained-layer InGaAs(P) Quantum-well semiconductor lasers and amplifiers,” IEEE J. Quantum Electron., Vol. 30, NO.2, pp.477-499, Feb. 1994.
    [50]J. Minch, “Theory and Experiment of InGaAsP and InGaAlAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron., Vol. 35, NO.5, pp.771-782, May. 1999.
    [51]N. Yamamoto, “Design and fabrication of low-threshold GRIN-SCH strained InGaAsP/InGaAsP SQW laser diodes,” in Proc. Logic and Functional Devices for Photonics and the 17th State-of-the-Art Program on Compound Semiconductors, The Electrochemical Society, NJ, 1993, Vol.92, NO.10, pp. 53-58.
    [52]A. F. Phillips, “The temperature dependence of 1.3-and 1.5-μm compressively strained InGaAs(P) MQW semiconductor lasers,” IEEE J. Selected Topics in Quantum Electron., Vol.5, NO.3, pp.401-412, MAY/JUNE. 1999.
    [53]T.-A. Ma, “Approximate optical gain formulas for 1.55-μm strained quaternary quantum-well lasers,” IEEE J. Quantum Electron., Vol.31, NO.1, pp.29-34, Jan. 1995.
    [54]J. Wang, “Augur recombination in long wavelength strained-layer quantum-well structures,” IEEE J. Quantum Electron., Vol.31, NO.5, pp.864-875, MAY. 1995.
    [55]Y. Zou, “Experimental study of Auger recombination, gain, and temperature sensitivity of 1.5μm compressively strained semiconductor lasers,” IEEE J. Quantum Electron., Vol.29, NO.6, pp.1565-1575, JUNE. 1993.
    [56] A. Kasukawa, “Very low threshold current density 1.5μm GaInAs/AlGaInAs graded-index separate-confinment-heterostucture strained quantum well laser diodes grown by organometallic chemical vapor deposition,” Appl. Phys. Lett, vol.59, NO.20, NOV. 1991.
    [57]H. K. Choi, “InGaAs/AlGaAs strained single quantum well diode laser with extremely low threshold current density and high efficiency,” Appl. Phys. Lett., vol.57, pp.321-323, 1990.
    [58]T. Tanbun-EK, “Growth and characterization of continuously graded index separate confinement heterostructure (GRIN-SCH) InGaAs-InP long wavelength strained layer quantum-well lasers by metalorganic vapor phase epitaxy,” IEEE J. Quantum Electron., Vol.26, NO.8, pp.1323-1327, AUG. 1990.
    [59] W. Lin, “Low threshold 1.5μm quantum well lasers with continuous linear-graded-index InGaAsP layers prepared by organomtallic vapor-phase epitaxy,” Appl. Phys. Lett., vol.62, No.11, pp.1239-1241, Mar. 1993.
    [60]G. B. Stringfellow, “Thermodynamic aspects of organmetallic vapor phase epitaxy,” J. Crystal growth, vol.62, pp.225-229, Mar. 1983.
    [61]K. Eguchi, “Effects of growth parameters on layer properties for InP and related alloys grown by MOCVD,” J. Crystal growth vol.93, pp.88-92, 1988.
    [62]M. Hata, “Residual impurities in epitaxial layers grown by MOVPE,” J. Crystal growth, vol.93, pp.543-549, 1988.
    [63] E. T. J. M. Smeets, “Solid composition of GaAs1-xPx grown by organmetallic vapor phase epitaxy,” J. Crystal growth, vol.82, pp.385-395, 1987.
    [64]F.Bugge, “MOVPE growth of highly strained InGaAs/GaAs quantum wells,”J. Crystal growth, vol.183, pp.511-518, 1998.
    [65] P.G. Eliseev, A. E. Drakin, and W. Pittroff, “A study of laser emission wavelength variations in 1.5μm InGaAsP/InP BRS laser diode: theoretical model and experiment,” IEEE J. Quantum Electronics, vol. 30, pp. 2271-2276, 1994.
    [66] T. Nakamura, T. Okuda, R. Kobayashi, Y. Muroya, K. Tsuruoka, Y. Ohsawa, T. Tsukuda, and S. Ishikawa, “1.3-μm AlGaInAs strain compensated MQW-buried- heterostructure lasers for uncooled 10-Gb/s opration,” IEEE J. selected topics in Quantum Electronics, vol. 11, NO.1, pp. 141-148, 2005.
    [67] M. Itoh, Y. Kondo, K. Kishi, M. Yamamoto, and Y. Itaya, “HIGH-Quality 1.3-μm GaInAsP-BH-Lasers fabricated by MOVPE and dry-etching technique,” IEEE Photon. Technol. Lett., vol. 8, pp. 989-991, 1996.
    [68] Y. Furushima, H. Yamazaki, K. Kudo, Y. Sakata, Y. Okunuki, Y. Sasaki, and T. Sasaki, “high temperature characteristics of 1.3-μm SSC-ASM-PBH LDs with selectively grown multiple-stripe recombination layers,”10th Intern. Conf. on Indium Phosphide and Related Materials pp.737-740, 1998
    [69] Y. Suzaki, O. Mitomi, Y. Kondo, Y. Sakai, Y. Kawaguchi, Y. Tohmori, Y. Kadota, and M. Yamamoto, “High-coupling efficiency of a 1.3-μm spot-size converter integrated laser diode with pn-buried heterostructure for high-temperature operation,” IEEE J. lightwave technology, vol. 15, NO.8, pp. 1602-1607, 1997.
    [70] H. S. Kim, D. K. Oh, I. H. Choi, “Effect of p-doping profile on performance of strained InGaAs/InGaAsP multiple quantum well buried heterostructure laser diodes with Fe- or p/n/p-doped InP current blocking layer,”Materials Science and Engineering B pp.202-205, 2000.
    [71] Y. Sakata, T. Morimoto, Y. Inomoto, and H. Hasumi, “Low-threshold straind multi-quantum well lasers fabricated by selective metalorganic vapor phase epitaxy without a semiconductor etching process,” J. Crystal growth vol.170, pp.456-460, 1997.
    [72] Y. Yoshida, H. Watanabe, K. Shibata, A. Takemoto, and H. Higuchi, “Theoretical and experimental analysis of leakage current in InGaAsP BH lasers with p-n-p-n current blocking layers,” IEEE J. Quantum Electronics, vol. 35, pp. 1332-1336, 1999.
    [73] H. Mawatari, M. Fukuda, S. I. Matsumoto, K. Kishi, and Y. Itaya “Reliability and degradation behaviors of semi-insulating Fe-doped InP buried heterostructure lasers fabricated by RIE and MOVPE,” IEEE J. lightwave technology, vol. 15, NO.3, pp. 534-537, 1997.
    [74] T. Kimura, S. Ochi, T. Ishida, E. Ishimura, T. Sonoda, Y. Mihashi, S. Takamiya and W. Susaki, “Undoped Al0.48In0.52As grown by metalorganic chemical vapor deposition as the current-blocking layer of laser diodes,” J. Cryst. Growth, vol. 158, pp. 418-424, 1996.
    [75] J. S. Osinski, “Threshold current analysis of compressive strain (0-1.8%) in low-threshold, long-wavelength quantum well lasers,” IEEE J. Quantum Electron., vol. 29, pp. 1576-1585, 1993.
    [76] A. Kasukawa, R. Bhat, C. E. Zah, M. A. Koza, and T. P. Lee, “Very low threshold current density 1.5mm GaInAs/AlGaInAs graded-index separate-confinement-heterostructure strained quantum well laser diodes grown by organometallic chemical vapor deposition,” Appl. Phys. Lett., vol. 59, pp. 2486-2488, 1991.
    [77] M. Levinshtein, S. Rumyantsev, and M. Shur, in Handbook Series on Semiconductor Parameters, vol. 2 pp. 156, World Scientific Publishing Co., Singapore, 1996.
    [78] I. Ladny, M. Ettenberg, H. F. Lockswood, and H. Kressel, “High temperature characteristics of InGaAsP/InP laser structures,” Appl. Phys. Lett., vol. 30, pp. 87-88, 1977.
    [79] J. A. Skidmore, B. L. Freitas, C. E. Reinhardt, E. J. Utterback, R. H. Page, and M. A. Emanuel “High-power operation of InGaAsP-InP laser diode array at 1.73 μm,” IEEE Photon. Technol. Lett., vol. 9, pp. 1334-1336, 1997.
    [80] Y. Sakata, P. Delansay, Y. Inomoto, M. Yamaguchi, T. Murakami and H. Hasumi, “All selective MOVPE growth BH-LDs fabricated by the novel self-alignment process,” IEEE Photon. Technol. Lett., vol. 8, pp. 179-181, 1996
    [81] T. Tanbun-Ek, S. N. G. Chu, P. W. Wisk, R. Pawelek, A. M. Sergent, J. Minch, E. Young, and S. L. Chuang “High performance buried heterostructure 1.55 μm wavelength AlGaInAs/InP multiple quantum well lasers grown entirely by MOCVD technique,” in 10th Intern. Conf. on Indium Phosphide and Related Materials, pp. 702-705, 1998.
    [82] T. Higashi, T. Takeuchi, K. Morito, M. Matsuda, and H. Soda “High-temperature semi-insulating CW operation of InGaAsP-InP buried heterostructure lasers using reactive ion-etching technique,” IEEE Photon. Technol. Lett., vol. 7, pp. 828-829, 1995.
    [83] D. Klotzkin, K. Kojima, N. Jordache, N. Chand, P. Kiely, M. Chien, M. Han, E. Michel, S. Ustin, S. Roycroft, D. Melville, R. Kunkel, and L. Ketelsen “High-speed directly modulated Fabry–Perot and distributed-feedback spot-size-converted lasers suitable for passive alignment, unisolated operation, and uncooled environments up to 85℃,” J. Lightwave Technol., vol. 21, pp. 69-78, 2003.
    [84] J. C. L.Yong, M. Rorison, and H. White, “1.3-um quantum-well InGaAsP, AlGaInAs, and InGaAsN laser material gain: A theoretical study,” IEEE J. Quantum Electron., vol. QE-38, pp 1553-1564, 2002.
    [85] J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of InGaAsP and InGaAlAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron., vol. QE-35, pp 771-782, 1999.
    [86] T. Nakamura, T. Okuda, R. Kobayashi, Y. Muroya, K. Tsuruoka, Y. Ohsawa, T. Tsukuda, and S. Ishikawa, “1.3-μm AlGaInAs strain compensated MQW-buried- heterostructure lasers for uncooled 10-Gb/s opration,” IEEE J. Selected Topics in Quantum Electron., vol. 11, pp. 141-148, 2005.
    [87] J. Jin, J. Shi, and D. Tian, “Study on high-temperature performances of 1.3-μm InGaAsP-InP strained multiquantum-well buried-heterostructure lasers,” IEEE Photon. Technol. Lett., vol. 17, pp. 276-278, 2005.
    [88] D. Bang, J. Shim, J. Kang, M. Um, S. Park, S. Lee, D. Jang, and Y. Eo, “High-temperature and high-speed operation of a 1.3-μm uncooled InGaAsP-InP DFB laser,” IEEE Photon. Technol. Lett., vol. 14, pp. 1240-1242, 2002.
    [89] Y. Sasaki, T. Hosoda, Y. Sakata K. Komatsu, and H. Hasumi, “ 1.48-µm-wavelength ASM-DC-PBH LD’s with extremely uniform lasing characteristics,” IEEE Photon. Technol. Lett., vol. 11, pp. 1211-1213, 1999.
    [90] K. Tsuruoka, R. Kobayashi, Y. Ohsawa, T. Tsukuda, T. Kato, T. Sasaki, and T. nakamura, “Four-channel 10-Gb/s operation of AlGaInAs-MQW-BH-DFB-LD array for 1.3-µm CWDM systems,” IEEE J. Selected Topics in Quantum Electron., vol. 11, pp. 1169-1173, 2005
    [91] H. S. Kim, D. K. Oh, and I. H. Choi, “Effect of p-doping profile on performance of strained InGaAs/InGaAsP multiple quantum well buried heterostructure laser diodes with Fe- or p/n/p-doped InP current blocking layer,” Mater. Sci. Eng. B, vol. 77, pp. 202-205, 2000.
    [92] P. Grodzinski, J. S. Osinski, A. Mathur, Y. Zou, and P. D. Dapkus, “Growth of InP related compounds on structured substrates for the fabrication of narrow stripe lasers,” J. Cryst. Growth, vol. 124, pp. 507-512, 1992.
    [93] C.A. Mullan, G. C. Weatherly, and D. A. Thompson, “Compositional variations in InGaAsP films grown on patterned substrates,” J. Cryst. Growth, vol. 182, pp. 226-274, 1997
    [94] G. Zimmermann, A. Ougazzaden, A. Gloukhian, E. V. K. Rao, D. Delprat, A. Ramdane, and A. Mircea, “Selective area MOVPE growth of InP, InGaAs and InGaAsP using TBAs and TBP at different growth conditions,” J. Cryst. Growth, vol. 170, pp. 645-649, 1997
    [95] X. G. Xu, Ch. Giesen, R. H□vel, M. Heuken and K. Heime, “Surface morphology and growth rate variation of InP on patterned substrates using tertiabutyphosphine,” J. Cryst. Growth, vol. 191, pp. 341-346, 1998
    [96] Y. D. Galeuchet, P. Roentgen, and V. Graf “GaInAs/InP selective area metalorganic vapor phase epitaxy for one-step grown buried low-dimensional structures,” J. Appl. Phys., Vol. 68, pp. 560-568, 1990.
    [97] M. Levinshtein, S. Rumyantsev, and M. Shur, in Handbook Series on Semiconductor Parameters, vol. 2 pp. 156, World Scientific Publishing Co., Singapore, 1996.
    [98] H. Mawatari, M. Fukuda, S. I. Matsumoto, K. Kishi, and Y. Itaya, “Reliability and degradation behaviors of semi-insulating Fe-doped InP buried heterostructure lasers fabricated by RIE and MOVPE,” J. Lightwave Technol., vol. 15, pp. 534-537, 1997.
    [99] N. Hwang, S. G Kang, H. T Lee, S. S. Park, M. K. Song, and K. E. Pyun,“An Empirical reliability prediction method for 1.55 μm InGaAs/InP MQW-DFB laser diodes,”IEEE Proceedings - Electronic Components and Technology Conference, pp. 1269-1271, 1997.
    [100] H. Hillmer and B. Klepser, “Low-cost edge-emitting DFB laser arrays for DWDM communication systems implemented by bent and tilted waveguides,” IEEE J. Quantum Electron., vol. 40, pp. 1377-1383, 2004.
    [101] K. David, G. Morthier, P. Vankwikelberge, and R. Baets, “Yield analysis of non-AR-coated DFB lasers with combine index and gain coupling,” Electron. Lett., vol. 26, pp. 234-238, 1990.
    [102] C. Kazmierski, D. Robein, D. Mathoorasing, A. Ougazzaden, and M. Filoche, “1.5 µm DFB lasers with new current-induced gain gratings,” IEEE J. Selected Topics Quantum Electron., vol. 1, pp. 371-374, 1995.
    [103] Z. M. Chuang, C. Y. Wang, W. Lin, H. H. Liao, J. Y. Su, and Y. K. Tu, “Very-low-threshold, high efficient, and low-chirp 1.55-µm complex-coupled DFB lasers with a current-blocking Grating,” IEEE Photon. Technol. Lett., vol. 8, pp. 1438-1441, 1996.
    [104] G. P. Li, T. Makino, R. Moore, and N. Puetz, “1.55-μm index/gain coupled DFB lasers with strained layer mutilquantum-well active grating,” Electron. Lett., vol. 28, pp. 1726-1727, 1992.
    [105] Y. Luo, Y. Nakano, K. Tada, T. Inoue, H. Hosomatsu, and H. Iwaoka “Purely gain-coupled distributed feedback semiconductor laser,” Appl. Phys. Lett., vol. 56, pp. 1620-1622, 1990.
    [106] J. Lowery and D. Novak, “Performance comparison of gain-coupled and index-coupled DFB semiconductor lasers,” IEEE J. Quantum Electron., vol. 30, pp. 2051-2063, 1994.
    [107] D. Bang, J. Shim, J. Kang, M. Um, S. Park, S. Lee, D. Jang, and Y. Eo, “High-temperature and high-speed operation of a 1.3-μm uncooled InGaAsP-InP DFB laser,” IEEE Photon. Technol. Lett., vol. 14, pp. 1240-1242, 2002.
    [108] D. G. Knight, W. T. Moore, and R. A. Bruce, “Growth of semi-insulating InGaAsP alloys using low-pressure MOCVD,” J. Cryst. Growth, vol. 124, pp. 352-357, 1992.
    [109] T. Nakamura, T. Okuda, R. Kobayashi, Y. Muroya, K. Tsuruoka, Y. Ohsawa, T. Tsukuda, and S. Ishikawa, “1.3-μm AlGaInAs strain compensated MQW-buried- heterostructure lasers for uncooled 10-Gb/s operation,” IEEE J. Selected Topics in Quantum Electron., vol. 11, pp. 141-148, 2005.
    [110] J. Jin, J. Shi, and D. Tian, “Study on high-temperature performances of 1.3-μm InGaAsP-InP strained multiquantum-well buried-heterostructure lasers,” IEEE Photon. Technol. Lett., vol. 17, pp. 276-278, 2005.
    [111] Y. Liu, J. K. White, D. Plumb, R. V. Penty, and I. H. White, “Enhanced 10-Gbit/s link performance for directly modulated complex-coupled DFB lasers via resonance frequency, damping rate, and chirp,” IEEE J. Selected Topics in Quantum Electron., vol. 11, pp. 1112-1120, 2005.
    [112] C. W. Hu, F. M. Lee, K. F. Huang, M. C. Wu, C. L. Tsai, Y. H. Huang, and C. C. Lin, “Uncooled 1.3 µm complex-coupled DFB BH laser diodes with the Fe-doped InGaAsP/InP hybrid current-blocking grating,” IEEE Photon. Technol. Lett., vol. 18, (in press) 2006.
    [113] M. Levinshtein, S. Rumyantsev, and M. Shur, in Handbook Series on Semiconductor Parameters, vol. 2 p. 156, World Sci. Pub. Co., Singapore, 1996.
    [114] T. L. Paoli, “A new technique for measuring the thermal impedance of junction lasers,” IEEE J. Quantum Electron., vol. QE-11, pp. 498-503, 1975.
    [115] N. Hwang, S. G. Kang, H. T. Lee, S. S. Park, M. K. Song, and K. E. Pyun, “An Empirical reliability prediction method for 1.55 μm InGaAs/InP MQW-DFB laser diodes,” in IEEE Proc. Electronic Components and Technology Conf., pp. 1269-1271, San Jose, California, U.S., 1997.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE