簡易檢索 / 詳目顯示

研究生: 劉柏輝
Liu, Po Hui
論文名稱: 795奈米窄頻雙光子之產生及量測
Generation and Measurement of 795 nm Narrowband Biphotons
指導教授: 褚志崧
Chuu, Chih Sung
口試委員: 劉怡維
王立邦
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 36
中文關鍵詞: 雙光子窄頻
外文關鍵詞: biphoton, narrowband
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用製做成雙重共振腔的PPKTP晶體,藉由其非線性效應,以及腔模重合頻率的長間隔,試圖架設出一套,架設相對簡易,適合應用在量子訊息科學上的單光子光源,並在實驗上檢測系統產生的雙光子性質。
    我們在實驗上驗證其窄頻頻寬,以及其產生生之雙光子間的正相關性,其後尋找能產生與銣原子交互作用光子的晶體溫度。我們在兩個不同pump頻率時,各在兩個晶體溫度下,觀察到雙光子之一能被銣原子吸收;並藉由此結果,與理論模型的趨勢,我們推測出可能使兩光子皆能被銣原子吸收的實驗操作方式。


    We fabricated our PPKTP crystal into a doubly-resonant cavity. By utilizing the nonlinear effect of the crystal, and the wide cluster spacing of the cavity, we hoped to construct a relatively simple setup for generation of biphoton source, which is suitable for application in the quantum information science, and furthermore estimated the qualities of our generated photons experimentally.
    We experimentally justified the biphotons’ narrow bandwidth and positive correlation; we then searched for the crystal temperature that generates biphotons to have interaction with rubidium atoms. We observed absorption of one of the biphotons by rubidium atoms at two different temperatures each when the pump beam was at two separate frequencies. According to this result and the tendency we found from our simulation model, we came up with a possible way to generate biphotons that can be simultaneously absorbed by rubidium atoms.

    摘要…………………………………………………………………………………… i Abstract………………………………………………………………………………..ii 致謝…………………………………………………………………………………...iii 圖表目錄……………………………………………………………………………...vi 一、實驗目的…………………………………………………………………………1 二、實驗理論…………………………………………………………………………2 1.窄頻雙光子的產生…………………………………………………………….2 (1)晶體非線性效應…………………………………………………………...2 (2)能量、動量守恆與Quasi Phase Matching………………………………..3 (3)光共振腔…………………………………………………………………...5 (4)晶體設計…………………………………………………………………...6 2. g^((2) ) (τ)………………………………………………………………………………7 (1)時間糾纏性………………………………………………………………...7 (2)頻寬與產生率……………………………………………………………...8 3.理論模擬……………………………………………………………………...10 三、實驗架設…………………………………………………………………………13 1. TOPTICA 雷射……………………………………………………………...13 2.鎖頻系統……………………………………………………………………...14 (1)飽和吸收光原理………………………………………………………….15 (2)鎖頻光路架設…………………………………………………………….16 (3)訊號處理與鎖頻………………………………………………………….17 3.晶體光路……………………………………………………………………...19 4.G2光路……………………………………………………………………….20 5.光柵光路……………………………………………………………………...20 四、實驗量測…………………………………………………………………………22 1.糾纏性與頻寬量測…………………………………………………………...23 2.雙光子產生率與晶體溫度關係……………………………………………...24 3.以光柵尋找晶體溫度範圍…………………………………………………...26 4.以銣原子腔體尋找晶體溫度………………………………………………...27 5.調整鎖頻頻率尋找晶體溫度………………………………………………...30 六、討論……………………………………………………………………………..32 1.峰值所在溫度不穩定………………………………………………………...32 2. Gray tracking…………………………………………………………………32 3. idler頻率與簡併頻率………………………………………………………..32 4.改變鎖頻頻率的效益………………………………………………………...33 七、總結………………………………………………………………………………35

    [1] Predojević, Ana, Mitchell, Morgan W. (Eds.), Engineering the Atom-Photon Interaction, Springer International Publishing (2015)
    [2] Chih-Sung Chuu, et al.,APL 101, 051108 (2012)
    [3] Robert W. Boyd, Nonlinear Optics, Third Edition, Academic Press, 2008
    [4] W. Wiechmann, T. Fuku, H. Masuda, and S. Kubota, Opt. Lett. 18, 1208–1210 (1993).
    [5] K. Kato and E. Takaoka, Appl. Opt. 41, 50405044 (2002).
    [6] M. J. Collett and C. W. Gardiner, Phys. Rev. A 30, 1386 (1984).
    [7] J. Bowie, J. Boyce, R. Chiao, Journal of the Optical Society of America B, 12 (1995)
    [8]網路資料https://www.sacher-laser.com/applications/overview/absorption_spectroscopy/rubidium_d1.html#TopAnchor

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE