研究生: |
蔡俊毅 Jinni Tsay |
---|---|
論文名稱: |
撓性雙穩態微機構的設計與實驗 Compliant Bistable Micromechanism: Design and Experiments |
指導教授: |
宋震國 博士
Dr. Cheng-Kuo Sung |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 英文 |
論文頁數: | 115 |
中文關鍵詞: | 撓性機構 、雙穩態機構 、微機電系統 、微鏡面定位裝置 、動態特性 |
外文關鍵詞: | Compliant Mechanism, Bistable Mechanism, MEMS, Micromirror Positioner, Dynamic Characteristics |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
撓性機構具有提高製造性、消除剛性接頭的間隙及摩擦、減少組裝程序、降低成本等特性,特別適合微機電系統(MEMS),尤其微機電系統目前的製程仍受限,無法製造出配合良好的剛性接頭,撓性機構的應用更可提高製程良率,正廣泛應用於微機電系統。雙穩態機構則特別適合用在切換裝置,因為雙穩態機構可以在不供應能量下,保持在穩態位置,因此具有省能效果,而且穩態位置相對具有較高之定位精度。撓性雙穩態微機構結合了撓性機構與雙穩態機構的優點,在微機電系統中可以展現其優越特性。本論文有系統的設計撓性雙穩態微機構,從雙穩態行為的確認、兩個穩態位置間位移量的計算、致動力的評估以及結構最大應力的計算,以得到所需的雙穩態行為,其位移量符合所望,致動力低於致動器所提供之作用力,並保持在材料安全範圍內。除了解析方法的求解,同時使用有限元素法(FEM)模擬其結果,最後以實驗驗證設計之可行性。除此,撓性雙穩態微機構的動態特性具有十分特異的特性,屬於非線性系統,又與一般的非線性系統不同,因此具有與眾不同的性質,本研究針對撓性雙穩態微機構的動態特性加以研究,並提出研究成果。另外,本論文也提出幾個撓性雙穩態微機構的應用例,並加以實現並證實能達到預期之功能。
This study presents a systematic design methodology to accomplish a compliant bistable micromechanism. The decision of the bistable behavior, the stresses of elastic members, the actuating force, the dynamic characteristics, and the springs are all analyzed, and a set of assumptions is arrived at that simplifies the calculations to design the micromechanism. Simulations are then carried out to verify the calculations and to identify the influence of the errors due to simplification. In addition, the particular dynamic characteristics of bistable mechanisms are derived, simulated, and subjected to experimentation. The experiments demonstrate the feasibility of the designs, the calculations and the simulations. The effects of tuning the parameters of the micromechanism are also illustrated clearly. Through tuning the parameters, one can create a compliant bistable mechanism which can perform the desired functions. A compliant bistable micromechanism is applicable to the switching device of MEMS. The applications of microrelay and micromirror positioner are specifically addressed. The devices for the relative experiments are fabricated by MUMPs® provided by MEMSCAP; the experiments are carried out and the results discussed.
1. Howell, L. L. and Midha, A., 1994, "A Method for the Design of Compliant Mechanisms with Small-Length Flexural Pivots," Transactions of the ASME 1994 Vol. 116, pp. 280-290.
2. Meunier, D., Desplats, R., Bengrik, B., Perez, G., Pellet, C., Ets?ve, D. and Benteo, B., 1998, "Electrical Characterization and Modification of a Micro-Electro-Mechanical System (MEMS) for Extended Mechanical Reliability and Fatigue Testing," Microelectronics Reliability. Vol. 38, pp. 1265-1269.
3. Yokokawa, R., Takeuchi, S., Kon, T., Ohkura, R., Edamatsu, M., Sutoh, K. and Fujita, H., 2003, "Transportation of Micromachined Structures by Biomolecular Linear Motors," IEEE Paper, pp.8-11.
4. Kaiser, T. J., Lutzenberger, B. J., Friholm, R. A., Himmer, P. A., and Dickensheets, D. L., 2001, "Silicon Nitride Biaxial Pointing Mirrors with Stiffening Ribs," MOEMS and Miniaturized Systems II, Proceedings of SPIE Vol. 4561, pp. 276-282.
5. Zhou, G., Low, D., and Dowd, P., 2001, "Method to Achieve Large Displacements Using Comb Drive Actuators," Micromachining and Microfabrication Process Technology VII, Proceedings of SPIE Vol. 4557, pp. 428-435.
6. Salamon, B. A., "Mechanical Advantage Aspects in Compliant Mechanisms Design," M.S. thesis, Purdue University, West Lafayette, Indiana.
7. Sevak, N. M. and McLarnan, C. W., "Optimal Synthesis of Flexible Link Mechanisms with Large Static Deflections," ASME paper No. 74-DET-83.
8. Her, I., "Methodology for Compliant Mechanism Design," Ph.D. dissertation, Purdue University, West Lafayette, Indiana.
9. Jensen, B.D., 1998, "Identification of Macro- and Micro-Compliant Mechanism Configurations Resulting in Bistable Behavior," M.S. Thesis, Brigham Young University Provo, UT.
10. Burns, R. H. and Crossely, F. R. E., 1966, "Structural Permutations of Flexible Link Mechanisms," ASME Paper, No. 66-MECH-5.
11. Shoup, T. E. and McLarnan, C.W., 1971, "On the Use of the Undulating Elastica for the Analysis of Flexible Link Mechanisms," Journal of Engineering for Industry, pp. 263-267.
12. Shoup, T. E. and McLarnan, C. W., 1971, "A Survey of Flexible Link Mechanisms Having Lower Pairs," Journal Mechanisms Vol. 6, pp. 97-105.
13. Winter, S. J. and Shoup, T. E., 1972, "The Displacement Analysis of Path-Generating Flexible-Link Mechanisms," Journal Mechanisms Vol. 7, pp. 443-451.
14. N. M. Sevak, and C. W. McLarnan, 1974, "Optimal Synthesis of Flexible Link Mechanisms with Large Static Deflections," ASME paper, No. 74-DET-83.
15. Salamon, B. A. and Midha, A., 1998, "An Introduction to Mechanical Advantage in Compliant Mechanisms," Journal of Mechanical Design ASME, Vol. 120, pp. 311-315.
16. Midha, A., Norton, T. W., and Howell, L. L., 1994, "On the Nomenclature, Classification, and Abstractions of Compliant Mechanisms," Journal of Mechanical Design, Vol. 116, pp. 270-279.
17. Howell, L.L. and Midha, A., 1995, "Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms," ASME Journal of Mechanical Design, Vol. 117, No. 1, pp. 156-165.
18. Howell, L.L, Midha, A., and Norton, T.W., 1996, "Evaluation of Equivalent Spring Stiffness for Use in a Pseudo-Rigid-Body Model of Large-Deflection Compliant Mechanisms," ASME Journal of Mechanical Design, Vol. 118, No. 1, pp. 126-131.
19. Edwards, B.T., 1996, "Functionally Binary Pinned-Pinned Segments," M.S. Thesis, Brigham Young University, Provo, Utah.
20. Howell, L. L. and Midha, A., 1994, "Evaluation of equivalent spring stiffness for use in a pseude-rigid-body model of large deflection compliant mechanisms," Machine Elements and Machine Dynamics ASME 1994 DE-Vol. 70, p. 405.
21. Ananthasuresh, G. K. and Kota, S., 1992, "A Feasibility Study on the Topological Synthesis of Compliant Mechanisms," Technical Report, The University of Michigan.
22. Ananthasuresh, G. K., Kota, S., and Gianchandani, Y., 1993, "Systematic Synthesis of Micro-Compliant Mechanisms Preliminary Results," Proc. The Third National Conference on Applied Mechanisms and Robotics Conference, Nov. 8-10, Vol. 2, p. 82.
23. Larsen, U. D., Sigmund, O., and Bouwstra, S., 1997, "Design and Fabrication of Compliant Micromechanisms and Structures with Negative Poisson's Ratio," J. of MEMS, Vol. 6, pp. 99-106.
24. Jonsmann, J., Sigmund, O., and Bouwstra, S., 1999, "Compliant Thermal Microactuators," Sensors and Actuators A, Vol. 76, pp. 463-469.
25. Frecker, M. and Canfield, S., 2000, "Design of Efficient Compliant Mechanisms from Ground Structure Based Optimal Topologies," Proceedings of ASME DETC: 26th Biennial Mechanisms and Robotics Conference, Baltimore, Maryland, pp. 1-8.
26. Parkinson, M. B., Jensen, B. D., Roach, G. M., 2000, "Optimization-Based Design of a Fully-Compliant Bistable Micromechanism," Proceedings of DETC¡¦00 ASME 2000 Design Engineering Technical Conference and Computers and Information in Engineering Conference September 10-13, 2000 Baltimore, Maryland, pp. 1-7.
27. Baker, M. S., Lyon, S. M., and Howell, L. L., 2000, "A Linear Displacement Bistable Micromechanism," Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 1-7.
28. H?lg, B., 1990, "On a Nonvolatile Memory Cell Based on Micro-electro-mechanics," Proceedings IEEE Workshop on MEMS, pp. 172-176.
29. Jensen, B. D., Howell, L. L., and Salmon, L. G., 1999, "Design of Two-Link, In-Plane, Bistable Compliant Mechanism," ASME Journal of Mechanical Design, Vol. 121, No. 3, pp. 416-423.
30. Dellmann, L., Novell, W., Marxer, C., Weible, K., Hoffmann, M., and de Rooij, N. F., 2001, "4¡Ñ4 Matrix switch Based on MEMS Switches and Integrated Waveguides," Transducers '01 Eurosensors XV, The 11th International Conference on Solid-state Sensor and Actuators, pp. 1332-1335.
31. Sun, X., Farmer, K. R., and Carr, M. N., 1998, "A Bistable Microrelay Based on Two-segment Multimorph Cantilever Actuators," Proceedings IEEE Workshop on MEMS, pp. 154-159.
32. Matoba, H., Ishikawa, T., Kim, C. J., and Muller, R. S., 1994, "A Bistable Snapping Microactuator," Proc. IEEE Micro Electro Mechanical Systems Workshop, Oiso, Japan, pp. 45-50.
33. Saif, M. T. A., 2000, "On a Tunable Bistable MEMS-Theory and Experiment," Journal of Microelectromechanical Systems, Vol. 9, No. 2, pp. 157-170.
34. Ruan, M., Shen, J., and Wheeler, C. B., 2001, "Latching microelectromagnetic relays," Sensors and Actuators, A, Vol. 91, pp. 346-350.
35. Wagar, H. N., 1977, "Impact of the Contact on Electrical System," IEEE Transactions on Parts, and Packaging, Vol. PHP-13, No. 1, pp. 3-13.
36. Bogdan M. and Kristiansen, M., 1988, "Analytical and Experimental Investigations of Reed Contact Bouncing," IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 1 I, No. 2, pp. 200-210.
37. Hosaka, H., Kuwano, H., and Yanagisawa, Keiichi, 1993, "Electromagnetic Microrelays-Concepts and Fundamental Characteristics," IEEE Paper, pp. 12-17.
38. Hosaka, H. and Kuwano, H., 1994, "Design and Fabrication of Miniature Relay Matrix and Investigation of Electromechanical Interference in Multi-Actuator Systems," IEEE Paper, pp. 313-318.
39. Schimkat, J., 1998, "Commutated Relay Switching System," IEEE Paper, pp. 669-674.
40. Taylor, W. P., Brand, O., and Allen, M. G., 1998, "Fully Integrated Magnetically Actuated Micromachined Relays," Journal Of Microelectromechanical Systems, Vol. 7, No. 2, pp. 181-191.
41. Chang, C. and Chang, P., 2000, "Innovative Micromachined Microwave Switch with Very Low Insertion Loss," Sensors and Actuators, Vol. 79, pp. 71-75.
42. Kruglick E. J. J. and Pister, K. S. J., 1999, "Lateral MEMS Microcontact Considerations," Journal of Microelectromechanical Systems, Vol. 8, No. 3, pp. 264-271.
43. Rizk, J., Tan, G. L., Muldavin, J. B., and Rebeiz, G. M., 2001, "High-isolation W-band MEMS Switches," IEEE Paper, pp. 10-12.
44. Lafontan, X., Pressecq, F., and Perez, G., 2001, "Physical and Reliability Issues in MEMS Microrelays with Gold Contacts," Proceedings of SPIE, Reliability, Testing, and Characterization of MEMS/MOEMS, Vol. 4558, pp. 11-21.
45. Lyon, S. M., Evans, M, S., Erickson, P. A., Howell, L. L., 1997, "Dynamic Response of Compliant Mechanisms Using the Pseudo-Rigid-Body Model," Proceedings of DETC¡¦97 ASME Design Engineering Technical Conferences September 14-l 7, 1997, Sacramento, California, pp. 1-8.
46. Harness, Ty. And Syms, R. R. A., 1999, "Characteristic Modes of Electrostatic Comb-Drive X-Y Microactuators," Journal of Micromechanics and Microengineering, Vol. 9, pp. 1-8.
47. Zhang, W., Baskaran, R., and Turner, K. L., 2002, "Nonlinear Behavior of a Parametric Resonance-Based Mass Sensor," Proceeding of IMECE2002, ASME International Mechanical Engineering Congress & Exposition, pp. 1-5.
48. Mahmoud, M. S., Khalil, D., El-Hagry, M. T., and Badr, M. A., 2002, "Improving the Comb Drive Actuator Transient Response Using Digital Compensation Technique," Proceeding of the 27th General Assembly of the International Union of Radio Science (Netherlands), pp. 436-439.
49. Ataman, C. and Urey, H., 2004, "Nonlinear Frequency Response of Comb-Driven Microscanners," MOEMS Display and Imaging Systems II, Proc. SPIE, Vol. 5348, pp. 166-174.
50. Ataman, C., Kaya, O., and Urey, H., 2004, "Analysis of Parametric Resonances in Comb-Driven Microscanners,", Proceeding of SPIE, MEMS, MOEMS, and Micromachining, Vol. 5455 (Not Printed).
51. Chang, S. A., 2001, Design of a Bistable Compliant Micro-Mechanism Applied to Optical Switch, Master thesis of National Tsing Hua University.
52. Rao, S. S., 2004, Mechanical Vibration, Fourth Edition, Pearson Education Inc. New Jersey, USA.
53. Caglar Ataman and Hakan Urey, "Nonlinear Frequency Response of Comb-Driven Microscanners," MOEMS Display and Imaging Systems II, Proc. SPIE, Vol. 5348, pp. 166-174, 2004.
54. Sharpe, W. N., Jr. Yuan, B. Edwards, R. L., and Vaidyanathan, R., 1997, "Measurements of Young's Modulus, Poisson's Ratio, and Tensile Strength of Polysilicon," 10th IEEE International Workshop on Microelectromechanical Systems, Nagaya, Japan, January 26-30, pp. 424-429.
55. Koester, D., Cowen, A. Mahadevan, R., and Hardy, B., 2002, PolyMUMPs Design Handbook, Revision 8.0, MEMSCAP.