研究生: |
廖宜霆 Liao, Yi Ting |
---|---|
論文名稱: |
氧化鉻薄膜在可見光與近紅外光波段光學特性之研究 Study on optical properties of chromium oxide film in visible light and near infrared region |
指導教授: |
蔡宏營
Tsai, Hung Yin |
口試委員: |
李紫原
Lee, Chi Young 蔣東堯 Chiang, Donyau 邱柏凱 Chiu, Po Kai |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 氧化鉻 、消光係數 、穿透率 、單層吸收膜 、衰減濾光片 、離子源助鍍 |
外文關鍵詞: | Chromium oxide, Extinction coefficient, Transmittance, Monolayer absorbing film, Neutral density filter, Ion beam assisted deposition |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的為探討氧化鉻(CrOx)薄膜在可見光波段及近紅外光波段之光學特性,以獲得在可見光波段650 nm位置吸收效果最佳(消光係數大)且在近紅外光波段1400 nm位置濾光效果最佳(穿透率低)之參數,應用在單層吸收膜及衰減濾光片上。
本研究使用電子束蒸鍍系統鍍製氧化鉻薄膜,以光譜儀量測反射率及穿透率,再使用數值方法分析光學常數。接下來以SEM及XRD檢測膜層結構、以XPS檢測組成成份及使用四點探針儀量測片電阻值。
本研究探討的製程變因包含製程壓力(通氧量)、製程溫度及離子源的使用與否。在製程壓力部份,隨通氧量增加,金屬相降低,薄膜穿透率逐漸上升;在製程溫度部份,在200 ℃時,穿透率略為下降,並未出現柱狀結晶;在離子源製程部份,使用Ar或O2離子源助鍍後,穿透率均有上升情形,其中以O2離子源較為明顯,膜層柱狀結構較少,膜層堆積緻密程度有所提升。由實驗結果得知,在製程壓力1×〖10〗^(-3) Pa、製程溫度200 ℃、未使用離子源助鍍條件下鍍製之氧化鉻薄膜,在650 nm處消光係數為0.048;在1400 nm處穿透率為68%,為本實驗獲得之最佳參數。
The purpose of this study is to investigate the optical properties of chromium oxide film in visible light and near infrared (NIR) region, to obtain the best absorbing effect (high extinction coefficient) at 650 nm and best filter effect (low transmittance) at 1400 nm. It can be applied in monolayer absorbing film and neutral density filter (ND filter).
The chromium oxide film is deposited by electron-beam evaporation system. The reflectance and transmittance are measured by spectrometer, then numerical method is used to analyze optical constants. The structure is detected by SEM and XRD; the composition is detected by XPS and sheet resistance is measured by four-point probe.
In this study, the process parameters include process pressure (oxygen flow rate), process temperature and ion beam assisted deposition (IAD). For the process pressure, the metal phase decreases and the transmittance increases with the oxygen flow rate. For the process temperature, there is a slight decrease in transmittance when the process temperature is 200 ℃, and columnar crystals can not be found in the structure. For the IAD, the transmittance increases after the Ar or O2 IAD process is used, the O2 IAD process is more obvious. The columnar structure in the film under O2 IAD process is less than the film without O2 IAD process, so the density of film deposition has increased. The results show that the best parameter for the process pressure is 1×〖10〗^(-3) Pa; for the process temperature is 200 ℃, without IAD process. At 650 nm, the extinction coefficient is 0.048; at 1400 nm, the transmittance is 68%.
[1] 陳宏彬,光學薄膜之原理與應用,精儀中心簡訊67期,pp. 14-15,2005年出版。
[2] 顧鴻壽、周本達、陳密、張德安、樊雨心、周宜衡,光電平面面板顯示器基本概論,高立圖書,2004年出版。
[3] R. W. Sabnis, J. W. Mayo, E. G. Hays, T. L. Brewer, M. D. Stroder, A. Yanagimoto, Y. Sone, Y. Watanabe and K. Ema, “Ultra thin photolithographically imageable organic black matrix coating material,” United States Patent, US 5780201 A, 1998.
[4] R. W. Sabnis, T. L. Brewer, R. E. Nichols, E. G. Hays, M. D. Stroder, A. Yanagimoto, Y. Sone, Y. Watanabe and K. Ema, “High optical density ultra thin organic black matrix system,” United States Patent, US 5998090 A, 1999.
[5] J. J. Burmeister and M. A. Arnoldet, “Evaluation of Measurement Sites for Noninvasive Blood Glucose Sensing with Near-Infrared Transmission Spectroscopy,” Clinical Chemistry, vol. 45, No. 9, pp. 1621-1627, 1999.
[6] K. J. Schlager, “Non-invasive near infrared measurement of blood analyte concentrations,” United States Patent, US 4882492 A, 1989.
[7] H. Fabricius and O. Pust, “Linear Variable Filters for Biomedical and Hyperspectral Imaging Applications,” in Optical Society of America Biomedical Optics meeting, 2014.
[8] S. H. Cho, J. H. Kang, M. K. Seo, J. K. Yang, S. Y. Kang and Y. H. Lee, “A metal-dielectric thin film with broadband absorption,” Proceedings of SPIE, vol. 7618, pp. 761819-1-761819-9, 2010.
[9] 李正中,薄膜光學與鍍膜技術,藝軒出版社,2004年出版。
[10] H. Giovannini and C. Amra, “Dielectric thin films for maximized absorption with standard quality black surfaces,” Applied Optics, vol. 37, No. 1, pp. 103-105, 1998.
[11] M. L. Steigerwald, “Antiflector black matrix having successively a chromium oxide layer, a molybdenum layer and a second chromium oxide layer,“ United States Patent, US 5566011 A, 1996.
[12] 塑料技術文壇-高遮光係數黑色矩陣(December 2015), Available: http://ibuyplastic.com/tech_center/tech_paper/tech_detailcotent.phtml?id=118&IBP_SID=2019ef49a9537a5230dd7d15e25d796d
[13] K. D. Lee, “Preparation and Characterization of Black Chrome Solar Selective Coatings,” Journal of the Korean Physical Society, vol. 51, No. 1, pp. 135-144, 2007.
[14] H. C. Barshilia, N. Selvakumar, K. S. Rajam and A. Biswas, “Structure and optical properties of pulsed sputter deposited CrxOy/Cr/Cr2O3 solar selective coatings,” Journal of Applied Physics, vol. 103, No. 2, pp. 023507-1-023507-11, 2008.
[15] M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel and M. Elbahri, “Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials,” Advanced materials, vol. 23, No. 45, pp. 5410-5414, 2011.
[16] S. L. Liou, H. T. Chang, P. Fan and P. L. Chen, “The preparation method of solar selective coatings with Cr2O3 and Al2O3 double ceramic structure,” China Patent, CN 102650474 A, 2012.
[17] E. Wäckelgård, A. Mattsson, R. Bartali, R. Gerosa, G. Gottardi, F. Gustavsson, N. Laidani, V. Micheli, D. Primetzhofer, B. Rivolta, “Development of W-SiO2 and Nb-TiO2 solar absorber coatings for combined heat and power systems at intermediate operation temperatures,” Solar Energy Materials & Solar Cells, vol. 133, pp. 180-193, 2015.
[18] Acktar Advanced Coating-Black Coating (December 2015), Available: http://www.acktar.com/category/BlackOpticalCoating
[19] H. Fujiwara. Spectroscopic Ellipsometry: Principles and Applications. Chichester: Wiley, 2007.
[20] O. S. Heavens. Optical Properties of Thin Solid Films. New York: Dover Publications, 1991.
[21] 高瞻自然科學教學資源平台-簡單化學鍵結概念(October 2016), Available: http://highscope.ch.ntu.edu.tw/wordpress/?p=14212
[22] L. Vergara, R. E. Galindo, R. Martínez, O. Sánchez, C. Palacio and J. M. Albella, “Control of the optical properties of silicon and chromium mixed oxides deposited by reactive magnetron sputtering,” Thin Solid Films, vol. 519, No. 11, pp. 3509-3515, 2011.
[23] M. Tabbal, S. Kahwaji, T. C. Christidis, B. Nsouli and K. Zahraman, “Pulsed laser deposition of nanostructured dichromium trioxide thin films,” Thin Solid Films, vol. 515, No. 4, pp. 1976-1984, 2006.
[24] M. F. Al-Kuhaili and S. M. A. Durrani, “Optical properties of chromium oxide thin films deposited by electron-beam evaporation,” Optical Materials, vol. 29, No. 6, pp. 709-713, 2007.
[25] X. F. Ding, Y. J. Wu, L. J. Yang, X. Cheng, S. D. Mao, Y. P. Wang, D. Zheng, Z. L. Song, “The properties of chromium oxide coatings on NdFeB magnets by magnetron sputtering with ion beam assisted deposition,” Vacuum, vol. 131, pp. 127-134, 2016.
[26] Wikipedia-X射線光電子能譜學(October 2016), Available: https://zh.wikipedia.org/wiki/X射線光電子能譜學
[27] Wikipedia-歐姆計(October 2016), Available: https://zh.wikipedia.org/wiki/歐姆計
[28] Y. P. Chen, K. Ding, L. Yang, B. Xie, F. Song, J. Wan, G. H. Wang and M. Han , “Nanoscale ferromagnetic chromium oxide film from gas-phase nanocluster deposition,” Applied Physics Letters, vol. 92, No. 17, pp. 173112-1-173112-3, 2008.