研究生: |
林景方 |
---|---|
論文名稱: |
以循環伏安法研究銅-胺基酸錯合物之電化學性質 Electrochemical investigations of copper/amino-acid complexes by cyclic voltammetry |
指導教授: | 吳劍侯 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 銅-胺基酸錯合物 、半可逆反應 、非均相電子傳遞速率常數 、量子產率 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究以循環伏安法探討水相中銅-胺基酸錯合物的電化學性質,我們發現銅-胺基酸錯合物呈現一個電子轉移且為半可逆氧化還原反應。整個電極反應如下:
第一式代表雙配位銅錯合物的還原與其逆反應(亦即氧化反應),第二、六式代表銅與其配位基的脫離與結合的反應,第三式代表一價銅離子的自身氧化還原反應。第四、五式代表一價銅與零價銅的氧化反應。由改變pH值、銅濃度與胺基酸濃度來觀察以雙配位與單配位物種為多數時的電化學反應,佐以理論的推算,確認銅-胺基酸錯合物為雙配位時,在還原前後的配位基個數相同。
銅-胺基酸錯合物的半波電位值與所鍵結配位基的種類相關。非均相電子傳遞速率常數為一個固定常數並不會隨著掃描速率的快慢而變化,在9種銅-胺基酸錯合物中,其非均相電子傳遞速率常數的範圍約在3.5×10-3 ~ 4×10-4 cm s-1 之間,最大與最小值的差值約10倍左右,差異並不大。由於一價銅量子產率為雙配位錯合物經過光分解為一價銅離子過程的反應速率,而k0值為雙配位錯合物經過還原反應變為一價銅錯合物的反應速率。因此兩者之間還存在著一價銅錯合物繼續分解速率的影響,所以會造成兩者之間有不簡單的排序關係。
Abstract
A detailed investigation on the electrochemical reduction of copper/amino acid complexes has been carried out using cyclic voltammetry with platinum microdisk electrode in aqueous solution containing 0.1M KCl as the supporting electrolyte. The stage of the first electron attachment is quasi-reversible reaction. The mechanism of the electrode process is following:
We investigated the effects of nine different amino acids, that is α-alanine, asparagine, glutamine, glycine, isoleucine, proline, serine, threonine, valine on the rate constant of heterogeneous electron transfer, k0, of the quasi-reversible reaction of Cu(II)L2 calculated by the theory developed by Nicholson.The mean values of k0 with nine different amino acids were between 3.5×10-3 ~ 4×10-4 cm s-1 with a standard deviation of 45%.The order of k0 dose not have simple correlation with that of Cu(I) quantum yield at 313nm.
Key words:
Copper/amino acid complexes; quasi-reversible reaction; rate constant; heterogeneous electron transfer; quantum yield.
參考文獻
Abrantes, L.M.; Araujo, L.V.; Levi, M.D., Voltammetric studies on copper deposition/dissolution reactions in aqueous chloride solutions. Miner. Eng. 1995, 8, 1467-1475.
Andrianirinaharivelo, S.; Mailhot, G.; Bolte, M., Photodegradation of organic pollutants (Fe3+ and Cu2+) present in natural waters. Sol. Energy Mater. 1995, 38, 459-474.
Arulsamy, N.; Srinivas, B.; Zacharias, P.S., Spectral and electrochemical investigations on some condensation prducts of cupper(II)-amino acid complexes. Transition Met. Chem. 1990, 15, 309-316.
Bard, A.J.; Faulkner, L.R., Electrochemical methods: Fundamentals and Applications. John Wiley & Sons, Inc. 2002.
Collins, C.M., A cyclic voltammetric study of the proton abstraction from selected aromatic ketones by superoxide. Electrochim. Acta 2000, 45, 2049-2059.
Das, S.; Johnson, G.R.A.; Nazhat, N.B.; Saadalla-Nazhat, R., Ligand Decomposition in the Photolysis of Copper(II)-amino-acid complexes in aqueous solution. J. Chem. Soc. Faraday Trans. 1984, 80, 2759-2766.
Drissi-Daoudi, R.; Irhzo, A.; Darchen, A., Electrochemical investigations of copper behaviour in different cupric complex solutions: Voltammetric study. J. App. Electrochem. 2003, 33, 339-343.
Glebov, E.M. et al., Photochemistry of copper(II) polyfluorocarboxylates and copper (II) acetate as their hydrocarbon analogues. J. Photochem. Photobiol. A: Chem. 2000, 133, 177-183.
Ivanov, S.V.; Trotsyuk, I.V.; Manorik, P.A., Kinetics and mechanism of Electroreduction of copper complexes with Leucine. Russ. J. Electrochem. 1995, 31, 649-654.
Luo, P.; Zhang, F.; Baldwin, R.P., Constant Potential Amperometric Detection of Underivatized Amino Acids and Peptides at a Copper Electrode. Anal. Chem. 1991, 63, 1702-1707.
Mailhot, G.; Andrianirinaharivelo, S.L.; Bolte, M., Photochemistry transfermation of iminodiacetic acid induced by complexation with copper(II) in aqueous solution. J. Photochem. Photobiol. A: Chem. 1995, 87, 31-36.
Muralidharan, S.; Ferraudi, G., Photochemistry of Copper(II) Complexes with Macrocyclic Amine Ligands. Inorg. Chem. 1981, 20, 2306-2311.
Nigovič, B.; Kujundźic, N., Electrochemical behavior of iron(III) complexes with aminohydroxamic acids. Polyhedron 2002, 21, 1661-1666.
Olmstead, M.L.; Nicholson, R.S., Cyclic Voltammetry Theory for the Disproportionation Reaction and Spherical Diffusion. Anal. Chem. 1969, 41, 862-868.
Ortiz, M.E.; Núñez-Vergara, L.J.; Squella, J.A., Voltammetric determination of the heterogeneous charge transfer rate constant for superoxide formation at a glassy carbon electrode in aprotic medium. J. Electroanal. Chem. 2003, 549, 157-160.
Pyati, R.; Murray, R.W., Solvent Dynamics Effects on Heterogeneous Electron Transfer Rate Constants of Cobalt Tris(bipyridine). J. Am. Chem. Soc. 1996, 118, 1743-1749.
Rooney, M.B., Achievement of Near-Reversible Behavior for the [Fe(CN)6]3-/4- Redox Couple Using Cyclic Voltammetry at Glassy Carbon, Gold, and Platinum Macrodisk Electrodes in the Absence of Added Supporting Electrolyte. Anal. Chem. 2000, 72, 3486-3491.
Saphier, M.; Burg, A.; Sheps, S.; Cohen, H.; Meyerstein, D., Complexes of copper(I) with aromatic compounds in aqueous solutions. J. Chem. Soc., Dalton Trans. 1999, 1845–1849.
Sun, L.; Wu, C.-H.; Faust, B.C., Photochemical Redox Reaction of Inner-Sphere Copper(II)-Dicarboxylate Complexes: Effects of the Dicarboxylate Lingand Structure on Copper(II) Quantum Yields. J. Phys. Chem. A 1998, 102, 8664-8672.
Swaddle, T.W., Homogeneous versus Heterogeneous Self-Exchange Electron Transfer Reactions of Metal Complexes: Insights from Pressure Effects. Chem. Rev. 2005, 105, 2573-2608.
Thomas, G.; Zacharias, P.S., Cyclic voltammetric studies of copper(II) dipeptide complexes. Evidence for copper(I) dipeptide complexes in aqueous media. Polyhedron 1984, 3, 861-866.
Thomas, G.; Zacharias, P.S., Cyclic voltammetric studies of copper(II) amino acid complexes: Electrochemical evidence for the generation of copper(I) complex as an intermediate. Polyhedron 1985, 4, 811-816.
Wang, P.-y., Determination of Ammonium Ion and Amines in the Photolysis of Cu(II)-Amino Acid Complexes in Aqueous Solution. Thesis for the master degree of Department of Atomic Science National Tsing Hua University, Taiwan, R.O.C. 2004.
Wu, J.F., Electroreduction of oxygen in quinoline and isoquinoline. Electrochim. Acta 1999.
Wu, Z.; Zhang, Z.; Liu, L., Electrochemical studies of a Cu(II)-Cu(III) couple: Cyclic voltammetry and chronoamperometry in a strong alkaline medium and in the presence of periodate anions. Electrochim. Acta 1997, 42, 2719-2723.
Zacharias, P.S.; Sreenivas, T.; Elizabathe, J.M., Differential-pulse voltammetric studies on some binary and ternary copper(II) amino acid complexes. Polyhedron 1986, 5, 1383-1386.
Zhou, H.; Gu, N.; Dong, S., Studies of ferrocene derivative diffusion and heterogeneous kinetics in polymer electrolyte by using microelectrode voltammetry. J. Electroanal. Chem. 1998, 441, 153-160.