研究生: |
張晏暠 Chang, Yen Hao |
---|---|
論文名稱: |
基於立體視覺的靜態模態分析 Static Modal Analysis Based on Stereo Vision |
指導教授: |
張禎元
Chang, Jen Yuan |
口試委員: |
張俊隆
Chang, Chun Lung 曹哲之 Tsao, Che Chih |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 171 |
中文關鍵詞: | 電腦視覺 、立體視覺 、三維掃描器 、有限元素分析 、模態分析 |
外文關鍵詞: | Computer vision, Stereoscopy, 3D scanner, FEA, Modal Analysis |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
該研究主要聚焦在將電腦視覺的技術應用在機械工程上,在論文內容中會介紹並解釋電腦視覺中重要的背景知識。立體視覺是目前已知不需外加主動式光源的方法中最精準的演算法,因此該研究利用立體視覺的概念去重建試料的幾何模型並設計一套靜態的模態量測系統。重建出的模型將會與已知的材料特性一起輸入到商用的有限單元法分析軟體中去計算數值解,而計算出的結果將會與實驗設備量測的結果進行比較,並確立該系統的可行性。
The thesis focuses on the application of computer vision techniques in mechanical engineering. In the contents, the important elements of computer vision are introduced and explained. The stereoscopy is the most robust algorithm that does not have to apply active light sources and has the highest accuracy. Therefore, the study applies the concept of the stereo vision to design a static modal analysis system by reconstructing the geometrical model of specimen. The reconstructed model combined with the known material properties and boundary conditions served as the input to the commercial finite element analysis (FEA) software to compute the numerical solution. The calculated results will be compared with the experimental ones acquired by the measuring instruments. In the study, a system is established to verify the feasibility of the proposed method.
[1] http://en.wikipedia.org/wiki/Image_sensor
[2] Roger Y. Tsai. “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses.” IEEE Journal of Robotics and Automation, 3(4):323–344. 1987.
[3] Z. Zhang. “A flexible new technique for camera calibration.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330–1334. 2000.
[5] D. A. Forsyth, J. Ponce. “Computer Vision-A Modern Approach.” 2011.
[6] L. Zhang, B. Curless, and S. Seitz. “Rapid shape acquisition using color structured light and multi-pass dynamic programming.” 3DPVT, pages 24–36. 2002.
[7] J. Geng. “Structured-light 3D surface imaging: a tutorial. IEEE Intelligent Transportation System Society.” 2011.
[8] C. Harris and M. Stephens. “A combined corner and edge detector.” In Proceedings of the Alvey Vision Conference, pages 147 – 151. 1988.
[9] D. Lowe. “Distinctive image features from scale-invariant keypoints, cascade altering approach.” IJCV, 60(2):91–110. 2004.
[10] H. C. Longuet-Higgins. “A computer algorithm for reconstructing from two projections.” Nature, 293:133–135. 1981.
[11] R. Hartley. “In defense of the eight-point algorithm.” IEEE-T.PAMI, 19(6):580–593. 1997.
[12] H. Bay, T. Tuytelaars, and L. V. Gool. “SURF: Speeded Up Robust Features.” ECCV. 2006.
[13] K. Mikolajczyk and C. Schmid. “A performance evaluation of local descriptors.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 10, 27, pp 1615--1630. 2005.
[14] W. Wang, J. E. Mottershead, T. Siebert, and A. Pipino. “Frequency response functions of shape features from full-field vibration using digital image correlation.” Mech. Syst. Signal Process. 28 333-347. 2012.
[15] M. A. Sutton, J. Orteu, and H. W. Schreier. “Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications.” 2009.
[16] S. P. Timoshenko and J. M. Gere. “Theory of elastic stability.” 2nd Ed. 2009.
[17] D. J. Ewins. “Modal testing: theory, practice, and application.” 2nd Ed. 2000.
[18] K. G. McConnell and P. S. Varoto. “Vibration testing: theory and practice.” 2nd Ed. 2008.
[19] A. V. Oppenheim and R. W. Schafer. “Discrete-Time Signal Processing.” 3rd Ed. 2009.
[20] Agilent Technologies. “The fundamental of modal testing.” Application Note 243 – 3.
[21] B. Cyganek and J. P. Siebert. “An Introduction to 3D Computer Vision Techniques and Algorithms.” 2009.