簡易檢索 / 詳目顯示

研究生: 謝佳展
Hsieh, Chia-Chan
論文名稱: 由幽門螺旋桿菌磷酸泛酸醯基乙胺腺苷轉移酶與其突變種的正向活性試驗分析參與活化的重要胺基酸
Forward Kinetic Assay of Phosphopantetheine Adenylyltransferase from Helicobacter pylori and Its Critical Residue Mutants
指導教授: 殷献生
Yin, Hsien-Sheng
口試委員: 張壯榮
Chang, Chuang- Rung
傅化文
Fu, Hua-Wen
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 40
中文關鍵詞: 磷酸泛酸醯基乙胺腺苷轉移酶胃幽門螺旋桿菌
外文關鍵詞: Phosphopantetheine Adenylyltransferase, Helicobacter pylori
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 胃幽門螺旋桿菌是一種常在人類胃部被發現的微需氧的革蘭氏陰性。全球有超過一半以上的人口都有感染胃幽門螺旋桿菌,研究指出胃幽門螺旋桿菌會增加胃潰瘍以及胃癌發生的風險。目前第一線的治療是使用抗生素加質子通道抑制劑的三合一療法治療一周,但發現有越來越多人利用此治療方法無法達到療效原因為幽門螺旋桿菌開始出現抗藥性。所以,找到新的抗菌藥物來治療胃幽門螺旋桿菌是很重要的。
    輔酶A生合成途徑是一個好的設計抗菌藥物的研究目標,因為其產物輔酶A是所有生物體生存所必須的輔因子。磷酸泛酸醯基乙胺腺苷轉移酶則是輔酶A生合成途徑中的速率限制步驟。瞭解磷酸泛酸醯基乙胺腺苷轉移酶的反應機制對於針對此蛋白的藥物設計是重要的。近來,胃幽門螺旋桿菌的磷酸泛酸醯基乙胺腺苷轉移酶與輔酶A的結構已經由我們實驗室所解出。將定點突變的磷酸泛酸醯基乙胺腺苷轉移酶以活性分析的方式來找出參與催化的重要胺基酸,以期能提供藥物設計時一些重要的資訊及想法。


    H. pylori is a gram-negative and microaerophilic bacterium found in human stomach. It infects more than 50% of the world population and increases the risk of developing gastric ulcer and stomach cancer. The standard first-line is a one week “triple therapy” but an increasing number of infected individuals are found to harbor antibiotic-resistant bacteria. It is important to find a new treatment or antibacterial drug targets to H. pylori.
    Coenzyme A (CoA) biosynthesis pathway is a good antimicrobial drug target to inhibit H. pylori infection because Coenzyme A is an essential cofactor in synthesis of oxidation of fatty acid for all living organisms. Phosphopantetheine adenylyltransferase (PPAT) is the rate-limiting enzyme involved in this pathway. Understanding the PPAT catalytic mechanism is important for drugs design. The structure of H. pylori PPAT has been determined recently. I had used the site-directed mutagenesis to identify the critical residues take part in enzyme catalysis by kinetic analysis. It provided important information about those critical residues when designing drugs.

    Abstract I 中文摘要 II Content III List of figures V List of tables VI 1.1 Helicobacter pylori 1 1.2 Coenzyme A synthesis pathway 2 1.3 Phosphopantetheine adenylyltransferase 3 1.4 Aim of the study 4 2. Materials and methods 4 2.1 Materials 5 2.2 Cloning and overexpression of the HpPPAT 6 2.3 Purification of HpPPAT and its mutants 8 2.4 Circular dichroism spectroscopy 9 2.5 Pyrophosphate assay 10 2.6 Kinetic analysis of forward reaction 11 3. Results and discussion 13 3.1 Sequence homology 13 3.2 Identification of hot spot residue and selection of possible critical residue 13 3.3 Circular dichroism 15 3.4 Kinetic analysis of HpPPAT 16 3.5 Kinetic analysis of the mutant PPATs 17 3.5.1 Residues around the adenine ring of CoA 17 3.5.2 Residues in the phosphate group of CoA 19 3.5.3 Residues in the Pantetheine arm of CoA 20 4. Conclusion 22 5. Figures 23 6. Tables 35 7. Reference 38

    (1) C. Spry, K. Kirk, and K.J. Saliba, Coenzyme A biosynthesis: an antimicrobial drug target. FEMS Microbiol Rev 32 (2008) 56-106.
    (2) Y. Fukuda, T. Tomita, K. Hori, K. Tamura, T. Shimoyama, and T. Nishigami, [The history of Helicobacter pylori]. Rinsho Byori 49 (2001) 109-15.
    (3) J.G. Kusters, A.H. van Vliet, and E.J. Kuipers, Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 19 (2006) 449-90.
    (4) D. Lamarque, and J. M. Peek R, Pathogenesis of Helicobacter pylori infection. Helicobacter 8 Suppl 1 (2003) 21-30.
    (5) D.R. Scott, E.A. Marcus, D.L. Weeks, and G. Sachs, Mechanisms of acid resistance due to the urease system of Helicobacter pylori. Gastroenterology 123 (2002) 187-95.
    (6) H. Kavermann, B.P. Burns, K. Angermuller, S. Odenbreit, W. Fischer, K. Melchers, and R. Haas, Identification and characterization of Helicobacter pylori genes essential for gastric colonization. J Exp Med 197 (2003) 813-22.
    (7) R. Leonardi, Y.M. Zhang, C.O. Rock, and S. Jackowski, Coenzyme A: back in action. Prog Lipid Res 44 (2005) 125-53.
    (8) S.A. Mirbagheri, M. Hasibi, M. Abouzari, and A. Rashidi, Triple, standard quadruple and ampicillin-sulbactam-based quadruple therapies for H. pylori eradication: a comparative three-armed randomized clinical trial. World J Gastroenterol 12 (2006) 4888-91.
    (9) F. Megraud, Basis for the management of drug-resistant Helicobacter pylori infection. Drugs 64 (2004) 1893-904.

    (10) V.K. Morris, and T. Izard, Substrate-induced asymmetry and channel closure revealed by the apoenzyme structure of Mycobacterium tuberculosis phosphopantetheine adenylyltransferase. Protein Sci 13 (2004) 2547-52.
    (11) H.J. Yoon, J.Y. Kang, B. Mikami, H.H. Lee, and S.W. Suh, Crystal structure of phosphopantetheine adenylyltransferase from Enterococcus faecalis in the ligand-unbound state and in complex with ATP and pantetheine. Mol Cells 32 431-5.
    (12) T. Suzuki, Y. Abiko, and M. Shimizu, Investigations on pantothenic acid and its related compounds. XII. Biochemical studies (7). Dephospho-coA pyrophosphorylase and dephospho-coA kinase as a possible bifunctional enzyme complex. J Biochem 62 (1967) 642-9.
    (13) A. Zhyvoloup, I. Nemazanyy, A. Babich, G. Panasyuk, N. Pobigailo, M. Vudmaska, V. Naidenov, O. Kukharenko, S. Palchevskii, L. Savinska, G. Ovcharenko, F. Verdier, T. Valovka, T. Fenton, H. Rebholz, M.L. Wang, P. Shepherd, G. Matsuka, V. Filonenko, and I.T. Gout, Molecular cloning of CoA Synthase. The missing link in CoA biosynthesis. J Biol Chem 277 (2002) 22107-10.
    (14) T.P. Begley, C. Kinsland, and E. Strauss, The biosynthesis of coenzyme A in bacteria. Vitam Horm 61 (2001) 157-71.
    (15) M.R. Webb, A continuous spectrophotometric assay for inorganic phosphate and for measuring phosphate release kinetics in biological systems. Proc Natl Acad Sci U S A 89 (1992) 4884-7.
    (16) T.C. Ullrich, M. Blaesse, and R. Huber, Crystal structure of ATP sulfurylase from Saccharomyces cerevisiae, a key enzyme in sulfate activation. EMBO J 20 (2001) 316-29.

    (17) A. Geerlof, A. Lewendon, and W.V. Shaw, Purification and characterization of phosphopantetheine adenylyltransferase from Escherichia coli. J Biol Chem 274 (1999) 27105-11.
    (18) J.R. Miller, J. Ohren, R.W. Sarver, W.T. Mueller, P. de Dreu, H. Case, and V. Thanabal, Phosphopantetheine adenylyltransferase from Escherichia coli: investigation of the kinetic mechanism and role in regulation of coenzyme A biosynthesis. J Bacteriol 189 (2007) 8196-205.
    (19) T.J. Wubben, and A.D. Mesecar, Kinetic, thermodynamic, and structural insight into the mechanism of phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis. J Mol Biol 404 202-19.
    (20) S. Rozovsky, and A.E. McDermott, The time scale of the catalytic loop motion in triosephosphate isomerase. J Mol Biol 310 (2001) 259-70.
    (21) J.R. Miller, V. Thanabal, M.M. Melnick, M. Lall, C. Donovan, R.W. Sarver, D.Y. Lee, J. Ohren, and D. Emerson, The use of biochemical and biophysical tools for triage of high-throughput screening hits - A case study with Escherichia coli phosphopantetheine adenylyltransferase. Chem Biol Drug Des 75 444-54.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE