研究生: |
李威錆 Li, Wei Chiang |
---|---|
論文名稱: |
有傳輸速率中斷限制之多細胞協調式波束成型 Multicell Coordinated Beamforming with Rate Outage Constraint |
指導教授: |
祁忠勇
Chi, Chong Yung |
口試委員: |
洪樂文
Hong, Yao Win 吳仁銘 Wu, Jen Ming 王蒞君 Wang, Li Chun 伍紹勳 Wu, Sau Hsuan 吳卓諭 Wu, Jwo Yuh |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 132 |
中文關鍵詞: | 協調式波束成型 、傳輸中斷機率 、凸優化 、分散式演算法 、複雜度分析 |
外文關鍵詞: | coordinated beamforming, outage probability, convex optimization, distributed algorithm, complexity analysis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們在傳輸端只擁有通道分布資訊(channel distribution information, CDI)的假設下研究多輸入單輸出(multiple-input single-output, MISO)干擾通道(interference channel, IFC)之協調式波束成型(coordinated beamforming, CoBF)設計。此波束成型設計以數學公式定義成在傳輸速率中斷機率及功率預算限制下最大化事先定義之系統效用(system utility)的最佳化問題。因為複雜的中斷機率限制,此問題是一個非凸(nonconvex)且難以處理的數學問題。我們首先分析了此抑制中斷之協調式波束成型問題的複雜度,並證明了當系統效用為加權總和速率(weighted sum-rate)時,抑制中斷之協調式波束成型問題是本質上難解的,亦即NP難解(NP-hard)。此外,當系統效用為加權最小速率(weighted min-rate)時,此波束成型問題在除了所有傳輸端都只裝設單天線的情況外也是NP難解的。這些結果證實了有效率的近似方法對於此波束成型問題是絕對必要的,尤其是應用於大規模網路上。
由於以上的複雜度分析結果,我們接下來將焦點集中於高計算效率的演算法以求得高品質的近似解,例如抑制中斷之協調式波束成型問題的穩定點(stationary points)。具體而言,我們使用連續凸近似(successive convex approximation, SCA)的概念提出了一個稱為分散式連續凸近似(distributed SCA, DSCA)演算法的高斯-賽德爾(Gauss-Seidel)型分散式演算法來處理此波束成型問題。DSCA演算法是在文獻中第一個能求得此波束成型問題穩定點的多項式時間演算法。然而,由於DSCA演算法的計算複雜度是隨網路規模及傳輸天線數量的高次多項式成長,所以當問題的規模增大時,這個演算法還不是一個很實用的解法。
基於審慎的問題重構,我們使用最佳化方法中的分塊連續上界最小化(block successive upper bound minimization, BSUM)法,進一步提出了一個更有效率的高斯-賽德爾型分散式演算法,稱為分散式分塊連續上界最小化(distributed BSUM, DBSUM)演算法。此外,利用加權最小均方差(weighted minimum mean square error, WMMSE)重構問題,我們也提出了一個稱為分散式加權最小均方差(distributed WMMSE, DWMMSE)演算法的雅可比(Jacobi)型分散式演算法,此方法具有平行化結構,且可用於最佳化加權總和速率效用。這兩種方法都被驗證能以遠低於DSCA演算法的計算複雜度及較低的通訊負擔(communication overhead)收斂到原本NP難解問題的穩定點。為了進一步提供測量演算法效能的基準,我們也提出了一個基於多區塊從外近似(polyblock outer approximation)的放鬆近似(relaxed approximation)法。模擬結果顯示DBSUM演算法與DWMMSE演算法在效能上及計算效率上都遠優於DSCA演算法,且與效能基準比較的結果也展現出大有可為的近似效能。
In this dissertation, we study the coordinated beamforming (CoBF) design in the multiple-input single-output (MISO) interference channel (IFC), assuming only channel distribution information (CDI) given a priori at the transmitters. The CoBF design is formulated as an optimization problem that maximizes a predefined system utility subject to constraints on the individual probability of rate outage and power budget. This problem is non-convex and appears difficult to handle due to the intricate outage probability constraints. We first conduct a complexity analysis of the outage constrained CoBF problem, and show that the outage constrained CoBF problem with the weighted sum-rate utility is intrinsically difficult, i.e., NP-hard. Moreover, the outage constrained CoBF problem with the weighted min-rate utility is also NP-hard except the case when all the transmitters are equipped with single antenna. These results confirm that efficient approximation methods are indispensable to the outage constrained CoBF problem, especially for the applications to large-scale networks.
Due to the complexity analysis results, we then focus on computationally efficient algorithms for obtaining high-quality approximate solutions, e.g., stationary points, of the outage constrained CoBF problem. Specifically, using the idea of successive convex approximation (SCA), we propose a Gauss-Seidel type distributed algorithm called the distributed SCA (DSCA) algorithm for handling the outage constrained CoBF problem. The DSCA algorithm is the first polynomial-time algorithm in the literature yielding stationary-point solution to the outage constrained CoBF problem. Nevertheless, the DSCA algorithm is not yet a practical solution when the problem size increases, since the computational complexity of the DSCA algorithm grows as a high-order polynomial of the network size and the number of transmit antennas.
Based on a judicious problem reformulation, we further propose, by leveraging on the block successive upper bound minimization (BSUM) method in optimization, a more efficient Gauss-Seidel type distributed algorithm, called distributed BSUM (DBSUM) algorithm. In addition, by exploiting a weighted minimum mean square error (WMMSE) reformulation, we also propose a Jocobi-type distributed algorithm, called distributed WMMSE (DWMMSE) algorithm, which can optimize the weighted sum-rate utility in a fully parallel manner. Both algorithms are shown to converge to the stationary points of the original NP-hard problems with much lower computational complexity and less communication overhead compared with the DSCA algorithm. To further provide a performance benchmark, a relaxed approximation method based on polyblock outer approximation is also proposed. Simulation results show that the DBSUM algorithm and the DWMMSE algorithm are significantly superior to the DSCA algorithm in both performance and computational efficiency, and can yield promising approximation performance by comparing with the performance benchmark.
J. Lee, Y. Kim, H. Lee, B. L. Ng, D. Mazzarese, J. Liu, W. Xiao, and Y. Zhou, “Coordinated multipoint transmission and reception in LTE-advanced systems,” IEEE Commun. Mag., vol. 50, no. 11, pp. 44–50, Nov. 2012.
D. Gesbert, S. Hanly, H. Huang, S. S. Shitz, O. Simeone, and W. Yu, “Multi-cell MIMO cooperative networks: A new look at interference,” IEEE J. Sel. Areas Commun., vol. 28, no. 9, pp. 1380–1408, Dec. 2010.
L. Ventruino, N. Prasad, and X.-D. Wang, “Coordinated scheduling and power allocation in downlink multicell OFDMA networks,” IEEE Trans. Vehicular Tech., vol. 58, no. 6, pp. 2835–2848, July 2009.
H. Dahrouj and W. Yu, “Coordinated beamforming for the multicell multiantenna wireless system,” IEEE Trans. Wireless Commun., vol. 9, no. 5, pp. 1748–1759, May 2010.
L. Ventruino, N. Prasad, and X.-D. Wang, “Coordinated linear beamforming in downlink multi-cell wireless networks,” IEEE Trans. Wireless Commun., vol. 9, no. 4, pp. 1451–1461, Apr. 2010.
E. Bj¨ornson, N. J. Jald´en, M. Bengtsson, and B. Ottersten, “Optimality properties, distributed strategies, and measurement-based evaluation of coordinated multicell OFDMA transmission,” IEEE Trans. Signal Process., vol. 59, no. 12, pp. 6086–6101, Dec. 2011.
A. B. Carleial, “Interference channels,” IEEE Trans. Inf. Theory, vol. 24, pp. 60–70, Jan. 1978.
X. Shang and B. Chen, “Achievable rate region for downlink beamforming in the presence of interference,” in Proc. Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 4-7, 2007, pp. 1684–1688.
V. S. Annapureddy and V. V. Veeravalli, “Sum capacity of MIMO interference channels in the low interference regime,” IEEE Trans. Inf. Theory, vol. 57, no. 5, pp. 2565–2581, May 2011.
Y.-F. Liu, Y.-H. Dai, and Z.-Q. Luo, “Coordinated beamforming for MISO interference channel: Complexity analysis and efficient algorithms,” IEEE Trans. Signal Process., vol. 59, no. 3, pp. 1142–1157, Mar. 2011.
D. Cai, T. Quek, C.W. Tan, and S. Low, “Max-min SINR coordinated multipoint downlink transmission–duality and algorithms,” IEEE Trans. Signal Process., vol. 60, no. 10, pp. 5384–5395, Oct. 2012.
Y. Huang, G. Zheng, M. Bengtsson, K.-K. Wong, L. Yang, and B. Ottersten, “Distributed multicell beamforming with limited intercell coordination,” IEEE Trans. Signal Process., vol. 59, no. 2, pp. 728–738, Feb. 2011.
Y. Huang, G. Zheng, M. Bengtsson, K.-K. Wong, L. Yang, and B. Ottersten, “Distributed multicell beamforming design approaching Pareto boundary with max-min fairness,” IEEE Trans. Wireless Commun., vol. 11, no. 8, pp. 2921–2933, Aug. 2012.
Y. Huang, C. W. Tan, and B. D. Rao, “Joint beamforming and power control in coordinated multicell: Max-min duality, effective network and large system transition,” IEEE Trans. Wireless Commun., vol. 12, no. 6, pp. 2730–2742, June 2013.
R. Zakhour and D. Gesbert, “Coordination on the MISO interference channel using the virtual SINR framework,” in Proc. Int. ITG Workshop on Smart Antennas, Berlin, Germany, Feb. 16-18, 2009.
S.-H. Park, H. Park, H. Kong, and I. Lee, “New beamforming techniques based on virtual SINR maximization for coordinated multi-cell transmission,” IEEE Trans. Wireless Commun., vol. 11, no. 3, pp. 1034–1044, Mar. 2012.
R. Zhang and S. Cui, “Cooperative interference management with MISO beamforming,” IEEE Trans. Signal Process., vol. 58, no. 10, pp. 5450–5458, Oct. 2010.
S.-J. Kim and G. Giannakis, “Optimal resource allocation for MIMO ad hoc cognitive radio networks,” IEEE Trans. Inf. Theory, vol. 57, no. 5, pp. 3117–3131, May 2011.
Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast
channel,” IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4331–4340, Sept. 2011.
D. H. N. Nguyen and T. Le-Ngoc, “Multiuser downlink beamforming in multicell wireless systems: A game theoretical approach,” IEEE Trans. Signal Process., vol. 59, no. 7, pp. 3326–3338, July 2011.
P. Weeraddana, M. Codreanu, M. Latva-aho, and A. Ephremides, “Multicell MISO downlink weighted sum-rate maximization: A distributed approach,” IEEE Trans. Signal Process., vol. 61, no. 3, pp. 556–570, Feb. 2013.
J. J. E. Garz´as, M. Hong, A. Garcia, and A. Garc´ıa-Armada, “Interference pricing mechanism for downlink multicell coordinated beamforming,” IEEE Trans. Commun., vol. 62, no. 6, pp. 1871–1883, June 2014.
M.-Y. Hong and Z.-Q. Luo, “Signal processing and optimal resource allocation for the interference channel,” Academic Press Library in Signal Process., 2013. [Online]. Available: http://arxiv.org/abs/1206.5144
E. G. Larsson and E. A. Jorswieck, “Competition versus cooperation on the MISO interference channel,” IEEE J. Sel. Areas Commun., vol. 26, no. 7, pp. 1059–1069, Sept. 2008.
E. G. Larsson, E. A. Jorswieck, J. Lindblom, and R. Mochaourab, “Game theory and the flat-fading Gaussian interference channel,” IEEE Signal Process. Mag., vol. 26, no. 5, pp. 18–27, Sept. 2009.
D. A. Schmidt, C. Shi, R. A. Berry, M. L. Honig, and W. Utschick, “Distributed resource allocation schemes: Pricing algorithms for power control and beamformer
design in interference networks,” IEEE Signal Process. Mag., vol. 26, no. 5, pp. 53–63, Sept. 2009.
E. A. Jorswieck and E. G. Larsson, “Monotonic optimization framework for the two-user MISO interference channel,” IEEE Trans. Commun., vol. 58, no. 7, pp. 2159–2168, July 2010.
W. Utschick and J. Brehmer, “Monotonic optimization framework for coordinated beamforming in multicell networks,” IEEE Trans. Signal Process., vol. 60, no. 4, pp. 1899–1909, Apr. 2012.
L. Liu, R. Zhang, and K.-C. Chua, “Achieving global optimality for weighted sum-rate maximization in the K-user Gaussian interference channel with multiple
antennas,” IEEE Trans. Wireless Commun., vol. 11, no. 5, pp. 1933–1945, May 2012.
L. P. Qian, Y. Zhang, and J. Huang, “MAPEL: Achieving global optimality for a non-convex wireless power control problem,” IEEE Trans. Wireless Commun., vol. 8, no. 3, pp. 1553–1563, Mar. 2009.
E. A. Jorswieck, E. G. Larsson, and D. Danev, “Complete characterization of the Pareto boundary for the MISO interference channel,” IEEE Trans. Signal Process., vol. 56, no. 10, pp. 5292–5296, Oct. 2008.
X. Shang, B. Chen, and H. V. Poor, “Multiuser MISO interference channels with single-user detection: Optimality of beamforming and the achievable rate region,” IEEE Trans. Inf. Theory, vol. 57, no. 7, pp. 4255–4273, July 2011.
R. Mochaourab and E. A. Jorswieck, “Optimal beamforming in interference networks with perfect local channel information,” IEEE Trans. Signal Process., vol. 59, no. 3, pp. 1128–1141, Mar. 2011.
E. Bj¨ornson, M. Bengtsson, and B. Ottersten, “Pareto characterization of the multicell MIMO performance region with simple receivers,” IEEE Trans. Signal Process., vol. 60, no. 8, pp. 4464–4469, Aug. 2012.
D. Love, R. Heath, V. Lau, D. Gesbert, B. Rao, and M. Andrews, “An overview of limited feedback in wireless communication systems,” IEEE J. Sel. Areas Commun., vol. 26, no. 8, pp. 1341–1365, Oct. 2008.
3GPP, “Coordinated multi-point operation for LTE physical layer aspects (Release 11),” 3rd Generation Partnership Project (3GPP), TR 36.819, Sept. 2011.
M. Razaviyayn, M. S. Boroujeni, and Z.-Q. Luo, “A stochastic weighted MMSE approach to sum rate maximization for a MIMO interference channel,” in Proc. 2013 IEEE SPAWC, Darmstadt, June 16-19, 2013, pp. 325–329.
H. Asgharimoghaddam, A. T¨olli, and N. Rajatheva, “Decentralizing the optimal multi-cell beamforming via large system analysis,” in Proc. 2014 IEEE ICC, Sydney, NSW, June 10-14, 2014, pp. 5125–5130.
Y. Shi, J. Zhang, and K. B. Letaief, “CSI overhead reduction with stochastic beamforming for cloud radio access networks,” in Proc. 2014 IEEE ICC, Sydney, NSW, June 10-14, 2014, pp. 5154–5159.
S. Lakshminarayana, M. Assaad, and M. Debbah, “Coordinated multi-cell beamforming for massive MIMO: A random matrix approach,” IEEE Trans. Inf. Theory, vol. 61, no. 6, pp. 3387–3412, June 2015.
E. Bj¨ornson, R. Zakhour, D. Gesbert, and B. Ottersten, “Cooperative multicell precoding: Rate region characterization and distributed strategies with instantaneous and statistical CSI,” IEEE Trans. Signal Process., vol. 58, pp. 4298–4310, Aug. 2010.
E. Karipidis, A. Gr¨undinger, J. Lindblom, and E. G. Larsson, “Pareto-optimal beamforming for the MISO interference channel with partial CSI,” in Proc. 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Aruba, Dutch Antilles, Dec. 13-16, 2009, pp. 5–8.
H.-N. Cho, G.-S. Heo, and Y.-H. Lee, “Interference coordination based on statistical CSI in multi-user MISO cellular system,” in Proc. 11th European Wireless Conference 2011, Vienna, Austria, Apr. 27-29, 2011, pp. 1–7.
P. de Kerret, M. Filippou, and D. Gesbert, “Statistically coordinated precoding for the MISO cognitive radio channel,” in 2014 48th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, Nov. 2-5, 2014, pp. 1083–1087.
S. Kandukuri and S. Boyd, “Optimal power control in interference-limited fading wireless channels with outage-probability specifications,” IEEE Trans. Wireless Commun., vol. 1, no. 1, pp. 46–55, Jan. 2002.
C. W. Tan, “Optimal power control in Rayleigh-fading heterogeneous networks,” in Proc. IEEE INFOCOM, Shanghai, April 10-15, 2011, pp. 2552–2560.
Y. Huang, C. W. Tan, and B. Rao, “Outage balancing in multiuser MISO networks: Network duality and algorithms,” in Proc. 2012 IEEE GLOBECOM, Anaheim, CA, Dec. 3-7, 2012, pp. 3918–3923.
S. Ghosh, B. D. Rao, and J. R. Zeidler, “Outage-efficient strategies for multiuser MIMO networks with channel distribution information,” IEEE Trans. Signal Process., vol. 58, no. 12, pp. 6312–6324, Dec. 2010.
Z. Liu, J.Wang, Y. Xia, R. Fan, H. Jiang, and H. Yang, “Power allocation robust to time-varying wireless channels in femtocell networks,” accepted as a regular paper by IEEE Trans. Vehicular Technology, 2015.
J. Lindblom, E. Karipidis, and E. G. Larsson, “Achievable outage rate regions for the MISO interference channel,” IEEE Wireless Commun. Lett., vol. 2, no. 4, pp. 439–442, Aug. 2013.
J. Park, Y. Sung, D. Kim, and H. V. Poor, “Outage probability and outagebased robust beamforming for MIMO interference channels with imperfect channel state information,” IEEE Trans. Wireless Commun., vol. 11, no. 10, pp. 3561–3573, Oct. 2012.
Y.-F. Liu, Y.-H. Dai, and Z.-Q. Luo, “Max-min fairness linear transceiver design for a multi-user MIMO interference channel,” IEEE Trans. Signal Process., vol. 61, no. 9, pp. 2413–2423, May 2013.
R. M. Karp, “Reducibility among combinatorial problems,” in 50 Years of Integer Programming 1958-2008, M. J¨unger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and L. A. Wolsey, Eds. Springer Berlin Heidelberg, 2010, ch. 8, pp. 219–241.
Z.-Q. Luo,W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, “Semidefinite relaxation of quadratic optimization problems,” IEEE Signal Process. Mag., vol. 27, pp. 20–34, May 2010.
W.-C. Li, T.-H. Chang, C. Lin, and C.-Y. Chi, “Coordinated beamforming for multiuser MISO interference channel under rate outage constraints,” IEEE Trans. Signal Process., vol. 61, no. 5, pp. 1087–1103, Mar. 2013.
J. Lindblom, E. Karipidis, and E. G. Larsson, “Outage rate regions for the MISO IFC,” in Proc. Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, Nov. 1-4, 2009, pp. 1120–1124.
M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified convergence analysis of block successive minimization methods for nonsmooth optimization,” SIAM Journal on Optimization, vol. 23, no. 2, pp. 1126–1153, 2013.
H. Tuy, “Monotonic optimization: Problems and solution approaches,” SIAM J. Optimization, vol. 11, no. 2, pp. 464–494, 2000.
W.-C. Li, T.-H. Chang, and C.-Y. Chi, “Multicell coordinated beamforming with rate outage constraint–Part I: Complexity analysis,” IEEE Trans. Signal Process., vol. 63, no. 11, pp. 2749–2762, June 2015.
W.-C. Li, T.-H. Chang, and C.-Y. Chi, “Multicell coordinated beamforming with rate outage constraint–Part II: Efficient approximation algorithms,” IEEE Trans. Signal Process., vol. 63, no. 11, pp. 2763–2778, June 2015.
J. Mo and J. Walrand, “Fair end-to-end window-based congestion control,” IEEE/ACM Trans. Networking, vol. 8, pp. 556–567, Oct. 2000.
Z.-Q. Luo and S. Zhang, “Dynamic spectrum management: Complexity and duality,” IEEE J. Sel. Topics Signal Process., vol. 2, no. 1, pp. 57–73, Feb. 2008.
S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK: Cambridge University Press, 2004.
Z.-Q. Luo and T.-H. Chang, “SDP relaxation of homogeneous quadratic optimization: Approximation bounds and applications,” in Convex Optimization in Signal Processing and Communications, D. P. Palomar and Y. C. Eldar, Eds. Cambridge, U.K.: Cambridge Univ. Press, 2010, ch. 4.
M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 1.21,” http://cvxr.com/cvx, Apr. 2011.
Y. Huang and D. P. Palomar, “Rank-constrained separable semidefinite programming with applications to optimal beamforming,” IEEE Trans. Signal Process., vol. 58, pp. 664–678, Feb. 2010.
D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA: Athena Scientific, 1999.
S. G. Krantz and H. R. Parks, The Implicit Function Theorem: History, Theory, and Applications. Boston, MA: Birkh¨auser, 2002.
J. Nocedal and S. J. Wright, Numerical Optimization. Berlin, Germany: Springer, 1999.
J. C. Dunn, “Global and asymptotic convergence rate estimates for a class of projected gradient processes,” SIAM J. Control Optim., vol. 19, no. 3, pp. 368–400, 1981.
S. S. Christensen, R. Argawal, E. de Carvalho, and J. M. Cioffi, “Weighted sumrate maximization using weighted MMSE for MIMO-BC beamforming design,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 1–7, Dec. 2008.
B. R. Marks and G. P. Wright, “A general inner approximation algorithm for nonconvex mathematical programs,” Operations Research, vol. 26, pp. 681–683, 1978.
E. Bj¨ornson, G. Zheng, M. Bengtsson, and B. Ottersten, “Robust monotonic optimization framework for multicell MISO systems,” IEEE Trans. Signal Process., vol. 60, pp. 2508–2523, May 2012.
3GPP, “Further advancements for E-UTRA physical layer aspects (Release 9),” 3rd Generation Partnership Project (3GPP), TR 36.814, Mar. 2010.
P. Rost, C. J. Bernardos, A. De Domenico, M. Di Girolamo, M. Lalam, A. Maeder, D. Sabella, and D. W¨ubben, “Cloud technolgies for flexible 5g radio access networks,” IEEE Commun. Mag., vol. 52, no. 5, pp. 68–76, May 2014.
D. P. Bertsekas, A. Nedi´c, and A. E. Ozdaglar, Convex Analysis and Optimization. Cambridge, MA: Athena Scientific, 2003.
R. A. Gamboa and B. Middleton, “Taylor’s formula with remainder,” in Proc. 3rd International Workshop of the ACL2 Theorem Prover and Its Applications, Grenoble, France, April 8-9, 2002.