簡易檢索 / 詳目顯示

研究生: 趙崇豪
Chung-Hao Chao
論文名稱: 果蠅調控日夜週期細胞的發育和神經網路分析
Development and Circuit Analysis of Clock Neurons in Drosophila melanogaster
指導教授: 江安世
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 44
中文關鍵詞: 日夜週期果蠅色素傳撥因子時鐘
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據果蠅調控其日夜週期的研究指出,控制果蠅日夜週期節律的細胞為一群位於腦內腹側的8顆細胞,稱為腹側神經元 ( ventral Lateral neurons ,LNvs)。 這些LNvs的神經分佈於果蠅兩邊的視葉和中央腦,並且會釋出一種稱做色素傳播因子 ( pigment dispersing factor, PDF) 的神經胜肽來控制其生理行為。 在我的研究上,由於近來許多基因轉殖果蠅的產生,讓我可以配合共軛交顯微鏡等影像技術來更進一步探討這8顆細胞的發育和神經網路。 Flip-out的技術讓我們知道單一顆細胞的表現型態;而利用表現在細胞膜上和只表現在細胞核中的綠螢光蛋白,並在發育中不同時期中解剖,讓我們可以知道pdf基因在腦內發育各個時期的表現和細胞數目。我也探討這些LNvs的軸突和樹突分佈,與之前人們猜測不同的是,我發現有數條由l-LNvs來的後視覺神經束 (posterior optic tract) 和數條從s-LNVs伸入中央腦的神經纖維是樹突。 除此之外,我也發現了這些LNvs所用的神經傳導物質不是乙烯膽鹼和章魚涎胺。 最後,我對於由我們實驗室所做的一株對紫外線敏感的果蠅UAS-Kaede做了一些討論,UAS-kaede能否用於解開這些LNvs的細胞出生時間和細胞血統 (cell lineage) 呢? 我認為,由於這些LNvs代謝速率很快的原因,使得我們很難去完全解開這些問題,但至少,kaede提供了我們一個新的方向和新的思維,將來,也許可以結合其他的影像技術諸如MARCM等等,來真正的完全解開這些所謂的時鐘細胞的神秘面紗。


    The circadian researches in Drosophila melanogaster indicated that the fly pacemaker cells are 8 cells located on ventral bilateral of the brain called “lateral neurons” (LNvs). The expression patterns of these 8 cells innervate both optic lobes and central brain, and release a kind of neuropeptide called pigment-dispersing factor (PDF) served as behavior circadian. In my study, since many transgenic flies were produced recent years, I was able to express different reporters on these LNvs by UAS/GAL4 system and to study further the development and circuit of these LNvs. Flip-out let us known the expression pattern of single LNvs. Combing mCD8-GFP and nuclear localized GFP let us to know the pdf expression pattern and cell number during different developmental stages. In the study of the axonal and dendritic distribution of these LNvs, unlike previous guesses, I found that several posterior optic tracts (POT) originated from l-LNvs and fibers send to central brain from s-LNvs are dendrites. In addition, I also found Acetylcholine and octopamine are not the neurotransmitters used in LNvs. Finally, I used a UV sensitive fly “UAS-kaede” constructed by our lab to prove that the cell lineage between 3 instar larvae and adults. In aspect of cell birth, I think it is difficult to solve these questions entirely because the metabolic rate of LNvs is very fast. However, kaede do provide us a new direction and a new insight to study the development of these LNvs. In the future, we may combine more image techniques, like MARCM, to unravel the mystery of these clock neurons entirely.

    摘要------------------------------------------------------1 謝誌------------------------------------------------------3 簡介------------------------------------------------------4 材料和方法------------------------------------------------6 結果-----------------------------------------------------11 討論-----------------------------------------------------17 參考文獻-------------------------------------------------20 圖片說明-------------------------------------------------24 附件說明-------------------------------------------------27 圖片-----------------------------------------------------28 附錄-----------------------------------------------------44

    Brand AH: Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993. 118: 401-415.

    Brian Kloss, Jeffery L. Price, Michael W. Young: The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iε. Cell 1998. 94: 97-107.

    Charlotte Helfrich-Forster: The period clock gene is expressed in central nervous system neurons which also produce a neuropeptide that reveals the projections of circadian pacemaker cells within the brain of Drosophila melanogaster. PNAS 1995. 92:612-616

    Charlotte Helfrich-Forster: The journal of neuroscience 2000. 20(9): 3339-3353.

    Charlotte Helfrich-Forster: The neuroarchitecture of circadian clock in the brain of Drosophila melanogaster. Microscopy Research And Technique 2003. 62: 94-102.

    Charlotte Helfrich-Forster, Marcus Tauber, Jae H. Park: Ectopic expression of the Neuropeptide pigment-dispersing factor alters behavioral rhythms in Drosophila melanogaster. The journal of Neuroscience 2000. 20(9):3339-3353.

    Fischer JA, Giniger E, Maniatis T, Ptashne M: GAL4 activates transcription in Drosophila . Nature 1988. 332: 853-865.

    Gerard P. McNeil, Xiaolan Zhang, F. Rob Jackson: A molecular rhythm mediating circadian click output in Drosophila. Neuron 1998. 20: 297-303.

    Giebultowicz JM, Ivanchenko M, Vollintine T. Organization of the insect circadian systems: spatial and developmental expression of clock genes in peripheral tissues of Driosophila melanogaster. Amsterdam: Elsevier 2001. 31-42

    Helfrich-Forster: Robust circadian rhythmicity of Drosophila melanogaster requires the presence of lateral neurons: a brain-behavioral study of disconnected mutants. J Comp Physiol 1998. 182: 435-453.

    Jae H. Park, Charlotte Helfrich-Forster, Jeffrey C. Hall: Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. PNAS 2000. 97: 3608-3613.

    Jay C. Dunlap: Molecular bases for circadian clocks. Cell 1999. 96: 271-290.

    Joan E, Rutila, Feffrey C. Hall: CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila and timeless. Cell 1998. 93: 805-814.

    Joseph B. Duffy: GAL4 system in Drosophila: a fly geneticist’s swiss army knife. Genesis 2002. 34: 1-15.

    Justin Blau and Michael W. Young: Cycling vrille expression is required for a functional Drosophila clock. Cell 1999. 99: 661-671.

    Lino saez, Michael W. Young: Regulation of nuclear entry of the Drosophila clock proteins PERIOD and TIMELESS. Neuron 1996. 17: 979-990.

    Michael W. Young: The molecular control of circadian behavioral rhythms and their entrainment in Drosophila. Annu Rev. Biochem 1998. 67: 135-152.

    Palf Stanewsky: Clock mechanisms in Drosophila. Cell Tissue Res 2002. 309: 11-26

    Park JH: Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. PNAS 2000. 97: 3608-3613.

    Patrick Emery, Ralf Stanewsky, Michael Rosbash: Drosophila CRY is a deep brain circadian photoreceptor. Neuron 2000. 26: 493-504.

    Paul: How does circadian clock send timing information to the brain? Cell&developmental biology 2001. 12: 329-342.

    Ralf Stanewsky. Cell Tissue Res 2002. 309:11-26

    Ronald J. Konopka, Seymour Benzer: Clock mutants of Drosophila melanogaster. PNAS 1971. 68: 2112-2116.

    Russell N. Van Gelder, Erik D. Herzog: Circadian rhythms: in the loop at last. Science 2003. 300:1534-1535.

    Satchidananda Panda, John B. Hogenesch, Steve A. Kay: Circadian rhythms from flies to human. Nature 2002. 417:329-335.

    Schmucker, D., Clemens, J.C., Shu, H., Worby, C.A., Xiao, J., Muda, M., Dixon, J.E., and Zipursky, S.L. 2000. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101: 671–684

    Shiga, Y., Tanaka-Matakatsu, M., Hayashi, S: A nuclear GFP/beta-galactosidase fusion protein as a marker for morphogenesis in living Drosophila. Dev., Growth Diffn 1996. 38(1): 99-106.

    Susan C. P. Renn, Jae H. Park, Paul H. Taghert: A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 1999. 99: 791-802.

    Thomas K. Darlington, Karen Wager-Smith: Closing the circadian loop: clock-induced transcription of its own inhibitors per and tim. Science 1998. 280: 1599-1603.

    Tzumin Lee, Liqun Luo: Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 1999. 22: 451-461.

    Wong AM, Wang JW, Axel R: Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 2002. 109: 229-241.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE