研究生: |
翁啟昌 Weng, Chi-Chang |
---|---|
論文名稱: |
以[18F]FP-(+)-DTBZ檢測帕金森氏動物模型之多巴胺神經損傷及相關治療藥物之療效分析 Estimation of The Dopamine Neuron Lesion and The Therapeutic Drug Efficacy on Different Parkinson’s Disease Animal Models with [18F]FP-(+)-DTBZ |
指導教授: |
許靖涵
Hsu, Ching-Han |
口試委員: |
魏孝萍
Wey, Shiaw-Pyng 蕭穎聰 Hsiao, Ing-Tsung 林昆儒 Lin, Kun-Ju 江耀璋 Chiang, Yao-Chang |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 氟-18-FP-(+)-DTBZ 、正子電腦斷層造影 、帕金森氏病 、厚朴酚 、1-甲基-4-苯基-1,2,3,6-四氫吡啶 、乳胞素 、體內法自動輻射曝光顯影實驗 |
外文關鍵詞: | F-18-FP-(+)-DTBZ, positron emission tomography, Parkinson’s disease, magnolol, MPTP, lactacystin, ex vivo autoradiography |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文為研究氟-18-FP-(+)-DTBZ結合正子電腦斷層造影於不同帕金森氏病動物模型上之應用。本研究共分為兩個部分,第一個部分之實驗以氟-18-FP-(+)-DTBZ 正子電腦斷層造影影像結果評估厚朴酚(Magnolol)於常見之MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) 動物模型上,是否對其已受損之多巴胺神經元具治療效果。第二個部分的實驗則是使用氟-18-FP-(+)-DTBZ 正子電腦斷層造影活體造影方式,確認以Lactacystin抑制UPS (ubiquitin proteasome system) 系統作為帕金森氏病動物模型的可行性。第一部分實驗結果發現,氟-18-FP-(+)-DTBZ造影結果清楚顯示動物經厚朴酚治療後,可有效緩解因MPTP所造成多巴胺神經元之損傷,證實氟-18-FP-(+)-DTBZ 正子電腦斷層造影可以運用於評估新的帕金森氏病治療藥物之療效。第二部分實驗之氟-18-FP-(+)-DTBZ PET 影像結果,不但確認顱內注射Lactacystin 在動物前側腦束 (medial forebrain bundle; MFB) 以抑制 UPS系統功能後,可以清楚觀察到多巴胺神經元之損傷,並可藉由氟-18-FP-(+)-DTBZ PET 測量動物在不同時間點及劑量之Lactacystin處理過後,該動物多巴胺神經元功能的損傷程度,更進一步確認氟-18-FP-(+)-DTBZ 正子電腦斷層造影可應用於評估新的帕金森氏病動物模型之特性評估。
This thesis reported two studies utilizing F-18-FP-(+)-DTBZ, a radiotracer targeting vesicular monoamine transporter type 2 (VMAT2) and positron emission tomography (PET) on neurotoxin-induced Parkinson’s disease (PD) animal models. The first study was to evaluate the therapeutic efficacy of Magnolol on MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine) animal model using F-18-FP-(+)-DTBZ PET imaging method. The second study was to verify the suitability of a rat model of PD induced by intracranial administration of Lactacystin via medial forebrain bundle (MFB), an ubiquitin proteasome system (UPS) inhibitor, using F-18-FP-(+)-DTBZ PET imaging approach.
The results of the first study clearly revealed that Magnolol can partially restore the dopaminergic neuron loss induced by MPTP. The results of the second study demonstrated that F-18-FP-(+)-DTBZ PET imaging not only can clearly show the lesion of dopaminergic neuron induced by Lactacystin to the MFB, but also can be used to monitor the different lesion level with various doses of lactacystin and different time after treatment.
1. Parkinson J. An essay on the shaking palsy. The Journal of neuropsychiatry and clinical neurosciences. 2002 May;14(2):223-36.
2. Massano J, Bhatia KP. Clinical approach to Parkinson's disease: features, diagnosis, and principles of management. Cold Spring Harbor perspectives in medicine. 2012 Jun 1;2(6):a008870.
3. Miller WC, DeLONG MR. Parkinsonian Symptomatology An Anatomical and Physiological Analysis. Annals of the New York Academy of Sciences. 1988 Jan 1;515(1):287-302.
4. Braak H, Braak E, Yilmazer D, Schultz C, De Vos RA, Jansen EN. Nigral and extranigral pathology in Parkinson's disease. JOURNAL OF NEURAL TRANSMISSION SUPPLEMENTUM. 1995 Jan 1;46:15-32.
5. Kung MP, Stevenson DA, Plössl K, Meegalla SK, Beckwith A, Essman WD, Mu M, Lucki I, Kung HF. [99m Tc] TRODAT-1: a novel technetium-99m complex as a dopamine transporter imaging agent. European Journal of Nuclear Medicine and Molecular Imaging. 1997 Apr 1;24(4):372-80.
6. Booij J, Habraken JB, Bergmans P, Tissingh G. Imaging of dopamine transporters with iodine-123-FP-CIT SPECT in healthy controls and patients with Parkinson's disease. The Journal of Nuclear Medicine. 1998 Nov 1;39(11):1879.
7. Howes OD, Montgomery AJ, Asselin M, Murray RM, Grasby PM, McGUIRE PK. Molecular imaging studies of the striatal dopaminergic system in psychosis and predictions for the prodromal phase of psychosis. The British Journal of Psychiatry. 2007 Dec 1;191(51):s13-8.
8. Kung MP, Hou C, Lieberman BP, Oya S, Ponde DE, Blankemeyer E, Skovronsky D, Kilbourn MR, Kung HF. In vivo imaging of β-cell mass in rats using 18F-FP-(+)-DTBZ: a potential PET ligand for studying diabetes mellitus. Journal of Nuclear Medicine. 2008 Jul 1;49(7):1171-6.
9. Okamura N, Villemagne VL, Drago J, Pejoska S, Dhamija RK, Mulligan RS, Ellis JR, Ackermann U, O'Keefe G, Jones G, Kung HF. In vivo measurement of vesicular monoamine transporter type 2 density in Parkinson disease with 18F-AV-133. Journal of Nuclear Medicine. 2010 Feb 1;51(2):223-8.
10. Hsiao IT, Weng YH, Hsieh CJ, Lin WY, Wey SP, Kung MP, Yen TC, Lu CS, Lin KJ. Correlation of Parkinson disease severity and 18F-DTBZ positron emission tomography. JAMA neurology. 2014 Jun 1;71(6):758-66.
11. Toomey JS, Bhatia S, La’Wanda TM, Orchard EA, Tainter KH, Lokitz SJ, Terry T, Mathis JM, Penman AD. PET Imaging a MPTP-Induced Mouse Model of Parkinson’s Disease Using the Fluoropropyl-Dihydrotetrabenazine Analog [18 F]-DTBZ (AV-133). PloS one. 2012 Jun 18;7(6):e39041.
12. Booij J, Kemp P. Dopamine transporter imaging with [123I] FP-CIT SPECT: potential effects of drugs. European journal of nuclear medicine and molecular imaging. 2008 Feb 1;35(2):424-38.
13. Cabezas R, Avila MF, Torrente D, El-Bachá RS, Morales L, Gonzalez J, Barreto GE. Astrocytes role in Parkinson: a double-edged sword. Neurodegenerative Disease. 2013;10(5772):54305.
14. Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 1983 Feb 25;219(4587):979-80.
15. Dauer W, Przedborski S. Parkinson's disease: mechanisms and models. Neuron. 2003 Sep 11;39(6):889-909.
16. Ungerstedt U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. European journal of pharmacology. 1968 Dec 1;5(1):107-10.
17. Chen HH, Lin SC, Chan MH. Protective and restorative effects of magnolol on neurotoxicity in mice with 6-hydroxydopamine-induced hemiparkinsonism. Neurodegener Dis 2011; 8(5): 364-374.
18. Muroyama A, Fujita A, Lv C, Kobayashi S, Fukuyama Y, Mitsumoto Y. Magnolol protects against MPTP/MPP+-induced toxicity via inhibition of oxidative stress in in vivo and in vitro models of Parkinson's disease. Parkinsons Dis. 2012; 2012: 985157.
19. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. α-Synuclein in Lewy bodies. Nature. 1997 Aug 28;388(6645):839-40.
20. McNaught KS, Olanow CW, Halliwell B, Isacson O, Jenner P. Failure of the ubiquitin–proteasome system in Parkinson's disease. Nature Reviews Neuroscience. 2001 Aug 1;2(8):589-94.
21. McNaught KS, Belizaire R, Jenner P, Olanow CW, Isacson O. Selective loss of 20S proteasome alpha-subunits in the substantia nigra pars compacta in Parkinsons disease. Neurosci Lett. 2002;326:155-58.
22. Chen PM, Weng CC, Chang YC, Lin KJ, Hsiao IT, Kung MP, Yen TZ, Chan MH, Wey SP. Visualization of restorative effect of a honokiol derivative on neurotoxicity in 6-Hydroxydopamine-induced hemiparkinsonism mice using 18F FP-(+)-DTBZ PET. European Journal of Nuclear Medicine and Molecular Imaging. 2013;40:S341-S342.
23. Lin KJ, Weng YH, Wey SP, Hsiao T, Lu CS, Skovronsky D, et al. Whole-body biodistribution and radiation dosimetry of 18F-FP-(+)-DTBZ (18F-AV-133): a novel vesicular monoamine transporter 2 imaging agent. Journal of Nuclear Medicine. 2010 Sep 1;51(9):1480-5.
24. Chao KT, Tsao HH, Weng YH, Hsiao IT, Hsieh CJ, Wey SP, Yen TC, Kung MP, Lin KJ. Quantitative analysis of binding sites for 9‐fluoropropyl‐(+)‐dihydrotetrabenazine ([18F] AV‐133) in a MPTP‐lesioned PD mouse model. Synapse. 2012 Sep 1;66(9):823-31.
25. Chen IJ, Lin KJ, Weng YH, Hsieh CJ, Chao KT, Tsao HH, Yen TC, Hsiao IT. Construction and evaluation of 18F-AV-133 small-animal PET templates for spatial normalization of the mouse brain. The 11th International Conference on Alzheimer’s and Parkinson’s Diseases, March 06-10, 2013. Florence, Italy.
26. Vernon AC, Johansson SM, Modo MM. Non-invasive evaluation of nigrostriatal neuropathology in a proteasome inhibitor rodent model of Parkinson's disease. BMC neuroscience. 2010 Jan 5;11(1):1.
27. Watson C. The Rat Brain in Stereotaxic Coordinates-The New Coronal Set. Academic press; 2004.
28. Hallman H, Lange J, Olson L, Strömberg I, Jonsson G. Neurochemical and histochemical characterization of neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on brain catecholamine neurones in the mouse. J Neurochem. 1985;44(1): 117–127.
29. Jakowec MW, Nixon K, Hogg E, McNeill T, Petzinger GM. Tyrosine hydroxylase and dopamine transporter expression following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurodegeneration of the mouse nigrostriatal pathway. J Neurosci Res. 2004;76(4): 539–550.
30. Fornai F, Battaglia G, Gesi M, Giorgi FS, Orzi F, Nicoletti F, et al. Time-course and dose-response study on the effects of chronic L-DOPA administration on striatal dopamine levels and dopamine transporter following MPTP toxicity. Brain Res. 2000;887(1): 110–117.
31. Lorenc-Koci E, Lenda T, Antkiewicz-Michaluk L, Wardas J, Domin H, Śmiałowska M, et al. Different effects of intranigral and intrastriatal administration of the proteasome inhibitor lactacystin on typical neurochemical and histological markers of Parkinson's disease in rats. Neurochemistry international. 2011 Jun 30;58(7):839-49.
32. Mackey S, Jing Y, Flores J, Dinelle K, Doudet DJ. Direct intranigral administration of an ubiquitin proteasome system inhibitor in rat: Behavior, positron emission tomography, immunohistochemistry. Experimental neurology. 2013 Sep 30;247:19-24.
33. Vernon AC, Crum WR, Johansson SM, Modo M. Evolution of extra-nigral damage predicts behavioural deficits in a rat proteasome inhibitor model of Parkinson's disease. PLoS One. 2011 Feb 25;6(2):e17269.
34. McNaught KS, Björklund LM, Belizaire R, Isacson O, Jenner P, Olanow CW. Proteasome inhibition causes nigral degeneration with inclusion bodies in rats. Neuroreport. 2002 Aug 7;13(11):1437-41.