簡易檢索 / 詳目顯示

研究生: 李坤原
Lee, Kun-Yuan
論文名稱: 利用X光光子相關光譜探測動態平衡系統之鬆弛時間與利用三光複繞射方法進行銻化銦晶體之相位研究
Using X-Ray Photon Correlation Spectroscopy to Measure Lifetime in Dynamical Equalibrium System and Study of Phase Relations of InSb Using X-Ray Three-Wave Diffraction
指導教授: 張石麟
Chang, Shih-Lin
口試委員: 蘇雲良
Soo, Yun-Liang
湯茂竹
Tang, Mau-Tsu
黃玉山
Huang, Yu-Shan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 70
中文關鍵詞: 三光繞射相位同調散射鬆弛時間
外文關鍵詞: three-wave diffraction, coherent scattering, XPCS
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分為兩個部分。第一部分為利用X光光子相關光譜探測動態平衡系統內的鬆弛時間,量測粒子的散射光與其位置有關,動態系統中粒子位置隨時不斷改變所反映的散射強度如同雜訊一般,利用強度的自相關函數可將其動態訊息給推導出來。鈷攙雜二氧化鈰奈米粒子晶體有著受到光照與加熱使氧缺陷生成與消滅的雙向動態變化機制,將此材料特性與XPCS實驗做結合,在樣品同時受到雙向變化且達到動態平衡的狀態下,量測散射強度並利用自相關函數的計算將兩個不同變化方向各自的鬆弛時間所計算出來,除此之外,利用超高解析度單光儀的架設探討時間同調性實驗的可行性。由於樣品的選擇與實驗架設上不甚理想,此次實驗並無法得到預期結果,最後經由理論計算的模擬下,證明在合適的樣品與實驗站的選擇下,可成功解析出樣品雙向動態變化各自的鬆弛時間。第二部分為利用三光複繞射方法進行鍗化銦晶體之相位研究,在一般二光繞射實驗中,由於相位問題無法從中得到晶體各原子面的相位,根據S.L. Chang教授1982年所提的三光複繞射方法,利用多組不因原點選擇而改變的三光不變相位搭配M.T.Tang博士於1988年所推導三光複繞射峰形與相位的關係結果,計算銻化銦晶體各原子面的相位。而峰形擬合方面,此次多考慮了光源水平方向發散角與繞射強度的摺積,使其更符合實驗的實驗情況,使得擬合結果更符合實驗峰形,得到相當精確的結果。


    This thesis includes two sections. In the first section, we apply x-ray photon correlation spectroscopy(XPCS) to measure the lifetime in a dynamical equilibrium system. The scattered intensity from particles which float in the air or suspend in the liquid depends on the positions of which. In dynamical system, the scattered intensity fluctuates with time because the positions of the particles are changing constantly. By using the autocorrelation function, we can obtain the dynamic and the structure information of particles by analyzing the fluctuating intensity. In our study, there are two dynamical mechanisms that Co-doped CeO2 nano-particles are heated and illuminated by X-ray. When the system is in dynamical equilibrium, we measure the scattered intensity from the sample and drive the lifetime using the autocorrelation function. The second section is about using the multi-diffraction method to resolve the phase problem in x-ray diffraction experiment. The multi-diffraction method has been reported by Prof. Chang in 1982. In 1988, Dr. Tang proposed that the invariant phase can be determinated by analyzing he intensity profile of the multi-wave diffraction. We adopted two methods above to study the phase relationships of the structure factors of crystalline InSb. The divergence of the light source in the horizontal direction is also considered in the theoretical analysis to improve the fitting accuracy.

    中文摘要 I 英文摘要 II 致謝 III 目錄 IV 圖表目錄 VI 第一部分 1 第一章 序論 2 第二章 X光散射理論 3 2.1 對單一原子之散射強度 3 2.2 時間相關函數(Time Correlation Function) 4 2.3雙時相關函數(Two Time Correlation Function) 7 第三章 紫外光對樣品變化之探討 9 3.1 樣品介紹 9 3.2 X光吸收近邊緣結構(XANES) 10 3.3 波長365奈米紫外光對樣品變化之測試 11 第四章 實驗架構 15 4.1同調長度 15 4.2光束線與實驗架構 16 4.3吸收光譜 18 4.4樣品座 19 4.5實驗步驟 19 第五章 數據與分析 26 5.1數據結果 26 5.2 激發樣品光源對樣品變化之量測 29 5.3理論模擬 31 第六章 結論 35 參考文獻 36 第二部分 38 第一章 序論 39 第二章 X光繞射理論 40 2.1布拉格繞射 40 2.1.1布拉格繞射 40 2.1.2艾瓦建構 40 2.2複繞射 42 2.2.1複繞射 42 2.2.2雷寧格掃描(Renninger scan) 42 2.3定碼 44 2.3.1實空間與倒空間轉換 44 2.3.2旋轉矩陣 45 2.3.3 空間群 47 2.3.4 交點 47 2.4結構因子 49 2.5相位訊息 51 2.5.1相位問題 51 2.5.2三光不變相位 51 2.5.3相位決定 52 第三章 X光動力繞射理論 53 3.1 基本波場方程式 53 3.2非對稱勞倫茲方程式 56 第四章 實驗儀器與步驟 57 4.1實驗儀器 57 4.2樣品介紹 58 4.3實驗步驟 58 第五章 數據結果與分析 63 5.1 峰形擬合 63 5.1.1反對稱勞倫茲函數 63 5.1.2卡方檢定(chi-squared test) 63 5.1.3擬合參數 64 5.1.4擬合原理 64 5.2數據結果 66 5.3數據分析 68 第六章 結論 69 參考文獻 70

    [1]Jin Wang, Ajay K.Sood, Parlapalli V.Satyam, Yiping Feng, Xiao-zhong Wu, Zhonghou Cai, Wenbing Yun, and Sunil K. Sinha “X-Ray Fluorescence Correlation Spectroscopy: A Method for Studying Particle Dynamics in Condensed Matter” PhysRevLett 80.1110
    [2]T.Thurn-Albrecht, F.Zontone, G.Grubel, “Photon correlation spectroscopy with high-energy coherent x-ray” Physical Review E 68,031407 (2003)
    [3]T.S.Wu,H.D.Li,Y.W.Chen,S.F.Chen,Y.S.Su,C.H.Chu,C.W.Pao,J.F.Lee,C.H.Lai,H.T.Jeng,S.L.Chang & Y.L.Soo“Unconventional interplay between heterovalent dopant elements: Switch-and-modulator band-gap engineering in (Y,Co)-Codoped CeO2 nanocrystals”Scientific Reports srep15415
    [4]NIST X-Ray Form Factor, Attenuation,and Scattering Table (http://physics.nist.gov/PhysRefData/FFast/html/form.html)
    [5]Shih-Lin Chang“Specical Topics on X-ray Diffrection”
    [6]Bruce J. Beme, Robert Pecora “Dynamic Light Scattering: With Applications to Chemistry,Biology, and Physics”
    [7]Mark Sutton and Khalid Laaziri, “Using coherence to measure two-time correlation function” Vol.11,No.19,Optics Express 2268
    [8]B.Ruta,Y.Chushkin,G.Monaco “Atomic-Scale Relaxation Dynamics and Aging in a Metallic Glass Probed by X-ray Photon Correlation Spectroscopy” PRL 109, 165701 (2012)
    [9]Graham Williams, David C.Watts “Non-symmertical Dielectric Relaxation Behaviour Arising from a Simple Empirical Decay Function” (1969)
    [10]Anders Madsen,Robert L Leheny,Hongyu Guo,Micheal Sprung and Orsolya Czakkel “Beyond simple exponential correlation functions and equilibrium dynamics in x-ray photon correlation spectroscopy”New Journal of Physics 12 (2010) 055001
    [11]Hu Ling-Fei,Gao Li-Dan, Li Zhen-Jie, Wang Shan-Feng , Sheng Wei-Fan, Liu Peng and Xu Wei“Monochromatic X-ray-induced thermal effect on four-reflection "nested" meV-monochromators: dynamical diffraction theory and finite-element analysis”
    [12]Shih-Lin Chang and Mau-Tsu Tang “Quantitative Determination of Phase of X-ray Reflections from Three-Beam Diffraction. I. Theoretical Considerations” Acta Cryst. (1988). A44, 1065-1072
    [13]Shih-Lin Chang and Fu-Son Han “A Practical Application of Experimentally Determind X-ray Phase Applied to the Direct Method” Acta Cryst. (1982). A38,414-417
    [14]湯茂竹, “利用X光複繞射定量決定相位之研究”國立清華大學物理系博士論文
    [15]Mau-Tsu Tang and Shih-Lin Chang“Quantitative Determination of Phase of X-ray Reflections from Three-Beam Diffraction. II. Experiments for Perfect Crysatals” Acta Cryst. (1988). A44, 1073-1078
    [16]黃亮喻, “藍寶石X光共振腔之可行性研究” 國立清華大學物理系碩士論文
    [17]廖伯諭, “矽與鍺共振多光繞射之相位研究” 國立清華大學物理系博士論文
    [18]John S. Reid “Debye-Waller Factors of Zinc-Blende-Structure Materials – A Lattice Dynamical Comparison”Acta Cryst. (1983)
    . A39,1-13

    QR CODE