簡易檢索 / 詳目顯示

研究生: 何英豪
Ho, Ying-Hao
論文名稱: SiOx薄膜之電阻式記憶體電阻轉換特性研究
The Resistive Switching Characteristics of Resistive Random Access Memory made with SiOx films
指導教授: 甘炯耀
Gan, Jon-Yiew
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 98
中文關鍵詞: 電阻式記憶體氧化矽導電通道理論非揮發性記憶體
外文關鍵詞: Resistive random asscess memory, Silicon oxide, filament theory, non volatile memory
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中利用磁控濺鍍法在鉑(Pt)電極上鍍製SiOx固態電解質薄膜並鍍製不同的金屬上電極製作出金屬-絕緣層-金屬(MIM)結構的電阻轉換記憶體。利用三種不同的上電極金屬(銀(Ag),銅(Cu)和鉑(Pt))釐清電阻轉換的可能機制。除此之外,調整鍍膜時間以及鍍膜氣氛來改變SiOx薄膜的厚度以及O/Si組成,藉著不同的實驗變數來探討缺陷以及厚度對於電阻轉換性質的影響,希望能從中探討為何一向被視為是良好的絕緣體材料卻能夠產生電阻轉換特性。從本實驗中得到以下的重要結果:(一)SiOx電阻轉換特性來自於可氧化且易擴散的上電極材料的貢獻,電阻轉換機制與上電極材料所建立的金屬導電通道有關。(二)Forming 的發生的過程中固態電解質會發生Space charge的效應,造成Forming voltage隨著厚度成二次方的關係增加。(三)SiOx固態電解質之O/Si組成改變對元件的Forming voltage造成影響,來源與Ag擴散時的available site數目多寡有關。


    目錄 第一章 前言與研究動機 1 1.1前言1 1 1.2研究動機 2 第二章 文獻回顧 3 2.1電阻式記憶體簡介 3 2.2陰離子參與氧化反應為機制的元件 8 2.3陽離子參與氧化反應為機制的元件 11 2.4以Si相關材料為固態電解質的相關研究 15 2.4.1 Cu-SiO2 系統 16 2.4.2 Amorphous Si系統 20 第三章 實驗方法與流程 39 3.1 元件製作 39 3.1.1 Pt底電極製作 39 3.1.2 固態電解質(SiOx)製作 40 3.1.3 上電極製作 (Ag, Cu, Pt) 40 3.2 薄膜分析 41 3.2.1 SEM 41 3.2.2 XPS 41 3.3 電性量測 42 第四章 實驗結果與討論 47 4.1 SiOx薄膜特性分析 47 4.1.1 SiOx薄膜之組成分析 48 4.2 上電極對於電阻轉換特性影響 51 4.2.1 Ag/SiOx/Pt,Cu/SiOx/Pt,Pt /SiOx/Pt元件的電流電壓曲線 51 4.2.2 Ag/SiOx/Pt元件的電阻轉換特性 57 4.3 固態電解質(SiOx)的影響 61 4.3.1不同厚度之固態電解質對Ag/SiOx/Pt元件電阻轉換特性的影響 61 4.3.2 Ag/SiOx/Pt 不同O/Si比例之固態電解質的電阻轉換特性 67 第五章 結論 94 第六章 參考文獻 96

    1 G. I. Meijer, "Materials science - Who wins the nonvolatile memory race?," Science 319 (5870), 1625-1626 (2008).
    2 R. Waser and M. Aono, "Nanoionics-based resistive switching memories," Nat. Mater. 6 (11), 833-840 (2007).
    3 A. Sawa, "Resistive switching in transition metal oxides," Mater. Today 11 (6), 28-36 (2008).
    4 M. N. Kozicki, C. Gopalan, M. Balakrishnan et al., "A low-power nonvolatile switching element based on copper-tungsten oxide solid electrolyte," IEEE Trans. Nanotechnol. 5 (5), 535-544 (2006).
    5 S. H. Chang, S. C. Chae, S. B. Lee et al., "Effects of heat dissipation on unipolar resistance switching in Pt/NiO/Pt capacitors," Appl. Phys. Lett. 92 (18), 3 (2008).
    6 C. Schindler, S. C. P. Thermadam, R. Waser et al., "Bipolar and unipolar resistive switching in Cu-doped SiO2," IEEE Trans. Electron Devices 54 (10), 2762-2768 (2007).
    7 S. Seo, M. J. Lee, D. H. Seo et al., "Reproducible resistance switching in polycrystalline NiO films," Appl. Phys. Lett. 85 (23), 5655-5657 (2004).
    8 D. Lee, D. J. Seong, I. Jo et al., "Resistance switching of copper doped MoOx films for nonvolatile memory applications," Appl. Phys. Lett. 90 (12), 3 (2007).
    9 M. J. Lee, S. Han, S. H. Jeon et al., "Electrical Manipulation of Nanofilaments in Transition-Metal Oxides for Resistance-Based Memory," Nano Lett. 9 (4), 1476-1481 (2009).
    10 鄭凱嶸, "二氧化鈦-白金奈米複合薄膜應用於非揮發性電阻式記憶體之特性研究," 清華大學碩士論文 (2008).
    11 Jon-Yiew Gan Chang-Po Hsiung, "Resistance Switching Characteristics of TiO2 Thin Films Prepared with Reactive Sputtering," Electrochem. Solid-State Lett., Volume 12, Issue 7, pp. G31-G33 (2009).
    12 C. Yoshida, K. Tsunoda, H. Noshiro et al., "High speed resistive switching in Pt/TiO2/TiN film for nonvolatile memory application," Appl. Phys. Lett. 91 (22), 3 (2007).
    13 蔡濬名, "氧化鋅薄膜於非揮發電阻式記憶體特性之研究," 清華大學碩士論文 (2008).
    14 W. Y. Chang, Y. C. Lai, T. B. Wu et al., "Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications," Appl. Phys. Lett. 92 (2), 3 (2008).
    15 N. Xu, L. F. Liu, X. Sun et al., "Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories," Appl. Phys. Lett. 92 (23), 3 (2008).
    16 N. Xu, L. F. Liu, X. Sun et al., "Bipolar switching behavior in TiN/ZnO/Pt resistive nonvolatile memory with fast switching and long retention," Semicond. Sci. Technol. 23 (7), 4 (2008).
    17 C. Y. Lin, C. Y. Wu, T. C. Lee et al., "Effect of top electrode material on resistive switching properties of ZrO2 film memory devices," IEEE Electron Device Lett. 28 (5), 366-368 (2007).
    18 J. J. Yang, M. D. Pickett, X. M. Li et al., "Memristive switching mechanism for metal/oxide/metal nanodevices," Nat. Nanotechnol. 3 (7), 429-433 (2008).
    19 S. C. Chae, J. S. Lee, S. Kim et al., "Random circuit breaker network model for unipolar resistance switching," Adv. Mater. 20 (6), 1154-+ (2008).
    20 S. H. Chang, J. S. Lee, S. C. Chae et al., "Occurrence of Both Unipolar Memory and Threshold Resistance Switching in a NiO Film," Phys. Rev. Lett. 102 (2), 4 (2009).
    21 T. Sakamoto, H. Sunamura, H. Kawaura et al., "Nanometer-scale switches using copper sulfide," Appl. Phys. Lett. 82 (18), 3032-3034 (2003).
    22 Y. S. Park, S. Y. Lee, S. M. Yoon et al., "Nonvolatile programmable metallization cell memory switching element based on Ag-doped SbTe solid electrolyte," Appl. Phys. Lett. 91 (16), 3 (2007).
    23 劉子正, "氧化鋅薄膜之雙極性電阻轉換特性研究," 清華大學碩士論文 (2008).
    24 H. X. Guo, B. Yang, L. Chen et al., "Resistive switching devices based on nanocrystalline solid electrolyte (AgI)(0.5)(AgPO3)(0.5)," Appl. Phys. Lett. 91 (24), 3 (2007).
    25 Y. C. Yang, F. Pan, Q. Liu et al., "Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application," Nano Lett. 9 (4), 1636-1643 (2009).
    26 T. Sakamoto, K. Lister, N. Banno et al., "Electronic transport in Ta2O5 resistive switch," Appl. Phys. Lett. 91 (9), 3 (2007).
    27 M. Pyun, H. Choi, J. B. Park et al., "Electrical and reliability characteristics of copper-doped carbon (CuC) based resistive switching devices for nonvolatile memory applications," Appl. Phys. Lett. 93 (21), 3 (2008).
    28 X. Guo and C. Schindler, "Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems," Appl. Phys. Lett. 91 (13), 3 (2007).
    29 C. Schindler, M. Weides, M. N. Kozicki et al., "Low current resistive switching in Cu-SiO2 cells," Appl. Phys. Lett. 92 (12), 3 (2008).
    30 C. Schindler, G. Staikov, and R. Waser, "Electrode kinetics of Cu-SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories," Appl. Phys. Lett. 94 (7), 3 (2009).
    31 S. H. Jo and W. Lu, "CMOS compatible nanoscale nonvolatile resistance, switching memory," Nano Lett. 8 (2), 392-397 (2008).
    32 Y. J. Dong, G. H. Yu, M. C. McAlpine et al., "Si/a-Si core/shell nanowires as nonvolatile crossbar switches," Nano Lett. 8 (2), 386-391 (2008).
    33 S. H. Jo, K. H. Kim, and W. Lu, "Programmable Resistance Switching in Nanoscale Two-Terminal Devices," Nano Lett. 9 (1), 496-500 (2009).
    34 S. H. Jo, K. H. Kim, and W. Lu, "High-Density Crossbar Arrays Based on a Si Memristive System," Nano Lett. 9 (2), 870-874 (2009).
    35 R. Alfonsetti, G. Desimone, L. Lozzi et al., 1994 (conference).
    36 A. Barranco, J. A. Mejias, J. P. Espinos et al., "Chemical stability of Sin+ species in SiOx (x < 2) thin films," J. Vac. Sci. Technol. A-Vac. Surf. Films 19 (1), 136-144 (2001).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE