簡易檢索 / 詳目顯示

研究生: 林子鈞
Tzu-Chun Lin
論文名稱: Significance Analysis of Microarrays via Adjusted T Statistics
指導教授: 許文郁
Wun-Yi Shu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 29
中文關鍵詞: Significance AnalysisMicroarrayAdjusted T Statistics
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In microarray experiments, numerous genes are tested at the same time, and some of them are with low variability. When detecting differentially expressed genes under two biological states, traditional t-test statistics would be very large because of the small denominator. Thus, many of these genes will be mistakenly declared significance via traditional t-test. The adjusted t statistic is to deal with this problem by adding a reasonable constant to the denominator of traditional t-test statistic. This paper suggests a method to select the added constant with data under a mixture model. Expectation-Maximization algorithm is used to estimate MLE of parameters of incomplete data and cope with the mixture components. The criterion of selecting appropriate adjustment is based on the goodness-of -fit test statistic for middle portion data and the postulated model. The simulation results confirm that adjusted t statistics perform better for significance analysis of microarrays.


    1.Introduction…………………………………………………… 1 2.Tools…………………………………………………………… 4 2.1 Expectation-Maximization algorithm for mixture models……………………………………………………… 4 2.2 Goodness-of-fit test for two distributions.…… 6 2.2.1 Kullback-Leibler quantity of information… 6 2.2.2 Sum of log spacing …………………………… 8 3.Methods………………………………………………………… 10 3.1 Test statistics definition……………………………10 3.2 MLE of mixture model via EM algorithm…………… 11 3.3 Determine d using goodness-of-fit ……………… 13 4.Performance…………………………………………………… 15 4.1 Simulation……………………………………………… 15 4.2 Distributions of selected…………………………… 18 4.3 Significant test results…………………………… 19 5.Conclusions & Discussions………………………………… 27 References……………………………………………………… 28

    Benjamini, Y., and Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society B, 57, 289-300.

    Benjamini, Y., and Yekutieli, D. (2001). The Control of the False Discovery Rate in Multiple Testing Under Dependency. The Annals of Statistics, 29, No.4, 1165–1188.

    Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977). Maximum Likelihood from Incomplete Data via the EM algorithm. Journal of the Royal Statistical Society B, 39, 1-38.

    Dundar, M.M., and Landgrebe, D. (2002). A Model Based Mixture Supervised Classification Approach in Hyperspectral Data Analysis. Life Fellow, IEEE, 40, 2692-2699.

    Dyson, G.. and Wu, C.F. (2006). MAOSA: A new procedure for detection of differential gene expression. Statistical Methodology, 3, 42-54.

    Efron, B., Tibshirani, R., Storey, J.D., and Tusher, V. (2001). Emprical Bayes analysis of a microarray experiment. Journal of the American Statistical Association, 96, 1151-1160.

    Genovese, C., and Wasserman, L. (2002). Operating characteristics and extensions of the false discovery rate procedure. Journal of the Royal Statistical Society B, 64, 499-517.

    Sakamoto, Y., Ishiguro, M., and Kitagawa, G.. (1986). Akaike Information Criterion Statistics. Japan: KTK Scientific Publishers.

    Storey, J. D. (2002). A direct approach to false discovery rates. Journal of the Royal Statistical Society B, 64, 479–498.

    Storey, J. D., and Tibshirani, R. (2001). Estimating the Positive False Discovery Rate Under Dependence, with Applications to DNA Microarrays. Technical Report (Dept. of Statistics, Stanford University), 2001-28.

    Tusher, V.G.., Tibshirani, R., and Chu, G.. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of National Academy of Science USA, 98, 5116-5121.

    Yekutieli, D., and Benjiamini, Y. (2000). Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics. Journal of Statistical Planning and Inference, 82, 171– 196.

    顏良芬 (2002),間距對數和統計量之研究,國立清華大學統計學研究所碩士論文。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE