簡易檢索 / 詳目顯示

研究生: 呂俊頡
Lu, Chun-Chieh
論文名稱: 自我對準閘極軟性石墨烯電晶體以及雙層單晶石墨烯超晶格之研究
Self-Aligned Flexible Graphene Field-Effect Transistors and Twisting Bilayer Graphene Superlattices
指導教授: 邱博文
口試委員: 陳啟東
張茂男
霍夫曼
Mario Hofmann
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 英文
論文頁數: 134
中文關鍵詞: 石墨烯拉曼光譜穿透式電子顯微鏡化學氣相沉積場效電晶體自我對準閘極軟性電子旋轉堆疊雙層石墨烯
外文關鍵詞: Graphene, Raman spectroscopy, Transmission electron microscopy, Chemical vapor deposition, Field-effect transistor, Self-aligned gate, Flexible electronics, Twisted bilayer graphene
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯為單一碳原子層所組成之二維平面蜂巢狀石墨,具備有天然的二維電子氣系統。石墨烯不僅具有強韌的機械性質,其特殊的線性能帶結構,使得於其中傳導之載子表現為零質量之迪拉克費米子,同時具備有極優異的載子傳導特性。石墨烯的發現不僅提供了一個絕佳的二維傳輸系統,蘊含著豐富有趣的物理現象之外,在電子光電產業的應用上,更是眾所矚目的材料。目前製備石墨烯的主要方法是利用化學氣相沉積的方式大面積地成長於銅箔表面上。本論文將逐步探討石墨烯的電子傳輸特性、拉曼光譜分析以及化學氣相沉積石墨烯之材料分析。此外,本論文利用自然氧化之鋁電極,製作出自我對準閘極石墨烯場效電晶體,與傳統上閘極電晶體相比,其元件特性顯著提升,且其簡易製作、條件限制低之特性,可將石墨烯電晶體擴展至軟性電子之應用上。最後,經由精確的調控成長參數後,本論文可成長出雙層單晶石墨烯結構,具有不同的旋轉角度堆疊可能性。再利用拉曼光譜以及電子顯微鏡之分析,便可探討不同旋轉堆疊石墨烯的拉曼光譜特性。本論文之研究希望石墨烯在電子或光學元件的製備與應用上具有一定的貢獻。


    Graphene, a single atomic layer of graphite comprising a planar two-dimensional hexagonal lattice of carbon atoms, is the building block for graphitic materials of all other dimensionalities. Based on the Mermin-Wagner Theorem, two-dimensional crystals were thermodynamically unstable and could not exist in ambient environment.The atomic monolayer materials have so far been known only as an integral part of larger three-dimensional structures. In 2004, A. K. Geim and K. S. Novoselov et al. provided a possible method to isolate two-dimensional single atomic carbon layer on SiO2 by using the mechanical cleavage of highly oriented pyrolytic graphite (HOPG).Since then, graphene has become an important research topic in the field of materials science and condensed-matter physics due to its unique properties. For instances, graphene has a host of characteristics that show great promise for the development of post silicon electronics,including a large room-temperature carrier mobility (20,000 cm2/V•s) and long-range ballistic transport.In addition to electrical properties, graphene is also an highly transparent material with an absorption of ∼ 2.3 % in visible light range Its thermal conductivity is measured to be ∼ 5,000 W mK-1 for a monolayer graphene at room temperature. The intrinsic mechanical properties of free-standing monolayer graphene are examined with the breaking strength of 42 N m-1 and the Young’s modulus of 1.0 TPa, indicating that it is one of the strongest materials ever measured.

    This thesis focuses on the electrical and optical properties of graphene, including the synthesis, material characterizations and device applications. The first part presents the fabrication of graphene electronic devices, starting from the graphene synthesis by chemical vapor deposition (CVD), and the improvement of the device geometry in top-gate field-effect transistor (FET), addressing its emerging applications in flexible electronics. The second part presents the characterization of single-crystal graphene, which exhibits a high crystalline quality examined by transport analysis. We also study the fundamental issue of interlayer coupling between two rotational single-crystal bilayer graphene, which provides insights into the unique energy spectra of the two-dimensional carbon electron systems and may pave the way toward the opto-electronic applications.

    Chapter 1 starts with the fundamentals of graphene, including the crystal structures as well as its energy band structure. The transport properties such as electric field-effect, minimum conductivity and scattering mechanism within graphene have been explained briefly. Chapter 2 presents an introduction of the Raman scattering, which is an important tool to examine the quality of graphene. We introduce the basic knowledge of Raman scattering and the phonon dispersion relation of graphene. Some extended studies such as electron-phonon coupling and doping effect have also been discussed. In Chapter 3, the characterization of polycrystalline graphene, such as Raman, transmission electron microscopy (TEM) and transport analysis have been presented. In order to improve the quality of graphene, we use the diluted concentration of hydrocarbon as precursor. This helps the self-limiting growth during the early stage of the growth on Cu. Single-crystal graphene can reduce the grain boundary scattering in micrometerscale electronics devices, which can enhance the device performance remarkably. In Chapter 4, a facile fabrication process for high-performance CVD graphene FETs with self-aligned drain/source contacts have been presented. In our process, an Al gate was directly defined on graphene by e-beam lithography, followed by air exposure or electrical annealing, forming a native oxide layer around the Al wire. We also characterize other device properties, such as charge neutrally point shifting, current saturation, and the complementary logic gate demonstration. Chapter 5 describes the fabrication of high-mobility low-voltage graphene FET array on a flexible plastic substrate using high-capacitance natural aluminum oxide as a gate dielectric in a self-aligned device configuration. The native aluminum oxide is resistant to mechanical bending and exhibits self-healing upon electrical breakdown. These results indicate that self-aligned graphene FETs can provide remarkably improved device performance and stability for a range of applications in flexible electronics. In Chapter 6, we present the study of the single-crystal bilayer graphene grown by ambient pressure CVD on polycrystalline Cu. Controlling the nucleation in early stage of growth allows the constituent layers to form single hexagonal crystals. New Raman active modes are shown to result from the twist, with the twist angle determined by the TEM analysis. The successful growth of single-crystal bilayer graphene provides an attractive jumping-off point for systematic studies of interlayer coupling in misoriented few-layer graphene systems with well-defined geometry.

    Abstract Acknowledgements Publication List Contents 1. Electrical Properties of Graphene 1.1 Electron Hybridization in Carbon Atoms 1.2 Crystal Structure of Graphene 1.3 Band Structure of Graphene 1.4 Massless Dirac Fermions 1.5 Transport Properties of Graphene 1.5.1 Electric Field Effect in Graphene 1.5.2 Conductivity Minimum 1.5.3 Scattering Mechanism in Graphene 2. Raman Scattering of Graphene 2.1 Principles of Raman Scattering 2.2 Phonon Dispersion Relation of Graphene 2.3 First- and Second-Order Raman Scattering in Graphene 2.4 Raman Spectra of Doped Graphene 2.4.1 Breakdown of The Adiabatic Born-Oppenheimer Approximation 2.4.2 G Band Width of Doped Graphene 3. Graphene Synthesis and Characterization 3.1 Experimental Details 3.1.1 Chemical Vapor Deposition 3.1.2 Raman Spectroscopy 3.1.3 Transmission Electron Microscopy 3.1.4 Device Fabrication 3.1.5 Transport Measurement 3.2 Polycrystalline Graphene 3.2.1 Introduction 3.2.2 Graphene Synthesis 3.2.3 Graphene Transfer 3.2.4 Raman Analysis and Optical Transmittance 3.2.5 TEM Analysis 3.2.6 Transport Analysis 3.3 Single-Crystal Graphene 3.3.1 Introduction 3.3.2 CVD Growth 3.3.3 Transport Analysis 3.4 Conclusions 4. Top-Gate Graphene Field-Effect Transistors 4.1 Gate Dielectrics Grown by Atomic Layer Deposition 4.1.1 Introduction 4.1.2 Deposition of ALD Al2O3 on Graphene 4.1.3 Device Properties 4.2 Self-Aligned Gate Structure with Naturally Aluminum Oxide 4.2.1 Introduction 4.2.2 Self-Aligned Gate Formation 4.2.3 Device Properties 4.2.4 Charge Neutrality Point Shifting 4.2.5 Current Saturation 4.2.6 Complementary Logic Gates Demonstration 4.3 Conclusions 5. Flexible Graphene Field-Effect Transistors with Self-Healing Gate Dielectrics 5.1 Introduction 5.2 Sample Fabrication 5.3 Devices Properties and Capacitance Measurements 5.4 Graphene FETs on PET Substrate 5.5 Flexibility of the Devices 5.6 Self-Healing of Gate Dielectrics 5.7 Breakdown Mechanism of Gate Dielectrics 5.8 Conclusions 6. Twisting Bilayer Graphene Superlattices 6.1 Introduction 6.2 Synthesis of Twisted Bilayer Graphene 6.3 Controlled Growth of Twisted Bilayer Graphene 6.4 Raman and TEM Analysis 6.5 Commensurate Structure 6.6 Twist Angle Distributions 6.7 Raman Properties of Twisted BLG with Small Angle 6.8 Raman Properties of Twisted BLG with Large Angle 6.9 Conclusions 7. Summary and Outlook Bibliography

    [1] N. D. Mermin, “Crystalline order in two dimensions,” Phys. Rev., vol. 176, no. 1, p. 250, 1968.
    [2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V.Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science,vol. 306, no. 5696, pp. 666–669, 2004.
    [3] M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, “Energy band-gap engineering of graphene nanoribbons,” Phys. Rev. Lett., vol. 98, no. 20, p. 206805, 2007.
    [4] D. A. Areshkin and C. T. White, “Building blocks for integrated graphene circuits,” Nano Lett., vol. 7, no. 11, pp. 3253–3259, 2007.
    [5] Y.-M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, “Operation of graphene transistors at gigahertz frequencies,” Nano Lett., vol. 9, no. 1, pp. 422–426, 2008.
    [6] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun., vol. 146, no. 9, pp. 351–355, 2008.
    [7] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, et al., “Electronic confinement and coherence in patterned epitaxial graphene,” Science, vol. 312, no. 5777, pp. 1191–1196, 2006.
    [8] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science, vol. 320, no. 5881, pp. 1308–1308, 2008.
    [9] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett., vol. 8, no. 3, pp. 902–907, 2008.
    [10] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, vol. 321, no. 5887, pp. 385–388, 2008.
    [11] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature, vol. 438, no. 7065, pp. 197–200, 2005.
    [12] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature, vol. 438, no. 7065, pp. 201–204, 2005.
    [13] A. Jorio, M. S. Dresselhaus, R. Saito, and G. Dresselhaus, Raman spectroscopy in graphene related systems. Wiley-VCH, 2010.

    [14] B. T. Kelly, Physics of graphite, vol. 3. Applied Science London, 1981.
    [15] S. Iijima et al., “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56–58, 1991.
    [16] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C 60: Buckminsterfullerene,” Nature, vol. 318, no. 6042, p. 162−163, 1985.
    [17] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, no. 3, pp. 183–191, 2007.
    [18] P. R. Wallace, “The band theory of graphite,” Phys. Rev., vol. 71, pp. 622–634, 1947.
    [19] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, “Chiral tunnelling and the Klein paradox in graphene,” Nat. Phys., vol. 2, no. 9, pp. 620–625, 2006.
    [20] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing, and A. Yacoby, “Observation of electron–hole puddles in graphene using a scanning singleelectron transistor,” Nat. Phys., vol. 4, no. 2, pp. 144–148, 2007.
    [21] J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, “Electric field effect tuning of electron-phonon coupling in graphene,” Phys. Rev. Lett., vol. 98, no. 16, p. 166802, 2007.
    [22] A. Fasolino, J. H. Los, and M. I. Katsnelson, “Intrinsic ripples in graphene,” Nat. Mater., vol. 6, no. 11, pp. 858–861, 2007. [23] M. I. Katsnelson, “Zitterbewegung, chirality, and minimal conductivity in graphene,” EPJ B, vol. 51, no. 2, pp. 157–160, 2006.
    [24] J. Tworzydło, B. Trauzettel, M. Titov, A. Rycerz, and C. W. J. Beenakker, “Subpoissonian shot noise in graphene,” Phys. Rev. Lett., vol. 96, no. 24, p. 246802, 2006.
    [25] F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskun, W. Bao, and C. N. Lau, “Phase-coherent transport in graphene quantum billiards,” Science, vol. 317, no. 5844, pp. 1530–1533, 2007.
    [26] E. H. Hwang, S. Adam, and S. Das Sarma, “Carrier transport in two-dimensional graphene layers,” Phys. Rev. Lett., vol. 98, no. 18, p. 186806, 2007.
    [27] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett., vol. 100, no. 1, p. 016602, 2008.
    [28] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance
    limits of graphene devices on SiO2,” Nat. Nanotechnol., vol. 3, no. 4, pp. 206–209, 2008.
    [29] J.-H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, “Chargedimpurity
    scattering in graphene,” Nat. Phys., vol. 4, no. 5, pp. 377–381, 2008.
    [30] M. I. Katsnelson and A. K. Geim, “Electron scattering on microscopic corrugations in graphene,” Philos. Trans. R. Soc. London, Ser. A, vol. 366, no. 1863, pp. 195–204, 2008.
    [31] X. Du, I. Skachko, A. Barker, and E. Y. Andrei, “Approaching ballistic transport in suspended graphene,” Nat. Nanotechnol., vol. 3, no. 8, pp. 491–495, 2008.
    [32] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, et al., “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol., vol. 5, no. 10, pp. 722–726, 2010.
    [33] D. Jena and A. Konar, “Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering,” Phys. Rev. Lett., vol. 98, no. 13, p. 136805, 2007.
    [34] S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, “A self-consistent theory for graphene transport,” Proc. Natl. Acad. Sci., vol. 104, no. 47, pp. 18392–18397, 2007.
    [35] A. K. M. Newaz, Y. S. Puzyrev, B. Wang, S. T. Pantelides, and K. I. Bolotin, “Probing charge scattering mechanisms in suspended graphene by varying its dielectric environment,” Nat. Commun., vol. 3, p. 734, 2012.
    [36] C. Jang, S. Adam, J.-H. Chen, E. D. Williams, S. Das Sarma, and M. S. Fuhrer, “Tuning the effective fine structure constant in graphene: Opposing effects of dielectric screening on short- and long-range potential scattering,” Phys. Rev. Lett., vol. 101, no. 14, p. 146805, 2008.
    [37] N. Petrone, C. R. Dean, I. Meric, A. M. van der Zande, P. Y. Huang, L. Wang, D. Muller, K. L. Shepard, and J. Hone, “Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene,” Nano Lett., vol. 12, no. 6, pp. 2751–2756, 2012.
    [38] M. S. Dresselhaus, A. Jorio, and R. Saito, “Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy,” Annu. Rev. Condens. Matter Phys., vol. 1, no. 1, pp. 89–108, 2010.
    [39] S. Reich and C. Thomsen, “Raman spectroscopy of graphite,” Philos. Trans. R. Soc. London, Ser. A, vol. 362, no. 1824, pp. 2271–2288, 2004.
    [40] S. Piscanec, M. Lazzeri, F. Mauri, A. C. Ferrari, and J. Robertson, “Kohn anomalies and electron-phonon interactions in graphite,” Phys. Rev. Lett., vol. 93, no. 18, p. 185503, 2004.
    [41] M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Phonon linewidths and electron-phonon coupling in graphite and nanotubes,” Phys. Rev. B, vol. 73, no. 15, p. 155426, 2006.
    [42] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, et al., “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett., vol. 97, no. 18, p. 187401, 2006.
    [43] A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron– phonon coupling, doping and nonadiabatic effects,” Solid State Commun., vol. 143, no. 1, pp. 47–57, 2007.
    [44] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, et al., “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol., vol. 3, no. 4, pp. 210–215, 2008.
    [45] M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio, and R. Saito, “Studying disorder in graphite-based systems by Raman spectroscopy,” Phys. Chem. Chem. Phys., vol. 9, no. 11, pp. 1276–1290, 2007.
    [46] N. Ferralis, R. Maboudian, and C. Carraro, “Evidence of structural strain in epitaxial graphene layers on 6H-SiC (0001),” Phys. Rev. Lett., vol. 101, no. 15, p. 156801, 2008.
    [47] L. Malard, M. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep., vol. 473, no. 5, pp. 51–87, 2009.
    [48] L. G. Cançado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett., vol. 11, no. 8, pp. 3190–3196, 2011.
    [49] V. Carozo, C. M. Almeida, E. H. M. Ferreira, L. G. Cançado, C. A. Achete, and A. Jorio, “Raman signature of graphene superlattices,” Nano Lett., vol. 11, no. 11, pp. 4527–4534, 2011.
    [50] Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y.-W. Tan, M. Fazlollahi, J. D. Chudow, J. A. Jaszczak, H. L. Stormer, and P. Kim, “Landau-level splitting in graphene in high magnetic fields,” Phys. Rev. Lett., vol. 96, no. 13, p. 136806, 2006.
    [51] S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, “Breakdown of the adiabatic Born–Oppenheimer approximation in graphene,” Nat. Mater., vol. 6, no. 3, pp. 198–201, 2007.
    [52] S. Gilje, S. Han, M. Wang, K. L. Wang, and R. B. Kaner, “A chemical route to graphene for device applications,” Nano Lett., vol. 7, no. 11, pp. 3394–3398, 2007.
    [53] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, et al., “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol., vol. 3, no. 9, pp. 563–568, 2008.
    [54] D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nat. Nanotechnol., vol. 3, no. 2, pp. 101–105, 2008.
    [55] M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, et al., “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc., vol. 131, no. 10, pp. 3611–3620, 2009.
    [56] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, et al., “Epitaxial graphene,” Solid State Commun., vol. 143, no. 1, pp. 92–100, 2007.
    [57] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney,T. Ohta, S. A. Reshanov, J. Röhrl, et al., “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nat. Mater., vol. 8, no. 3, pp. 203–207, 2009.
    [58] J. C. Shelton, H. R. Patil, and J. M. Blakely, “Equilibrium segregation of carbon to a nickel (111) surface: A surface phase transition,” Surf. Sci., vol. 43, no. 2, pp. 493–520, 1974.
    [59] M. Eizenberg and J. M. Blakely, “Carbon monolayer phase condensation on Ni (111),” Surf. Sci., vol. 82, no. 1, pp. 228–236, 1979.
    [60] T. A. Land, T. H. Michely, R. J. Behm, J. C. Hemminger, and G. Comsa, “STM investigation of single layer graphite structures produced on Pt (111) by hydrocarbon decomposition,” Surf. Sci., vol. 264, no. 3, pp. 261–270, 1992.
    [61] A. T. N’Diaye, S. Bleikamp, P. J. Feibelman, and T. Michely, “Two-dimensional Ir cluster lattice on a graphene Moiré on Ir (111),” Phys. Rev. Lett., vol. 97, no. 21, p. 215501, 2006.
    [62] P. W. Sutter, J.-I. Flege, and E. A. Sutter, “Epitaxial graphene on ruthenium,” Nat. Mater., vol. 7, no. 5, pp. 406–411, 2008.
    [63] C. Pan, H. Wu, C. Wang, B. Wang, L. Zhang, Z. Cheng, P. Hu, W. Pan, Z. Zhou, X. Yang, et al., “Nanowire-based high-performance “micro fuel cells”: One nanowire, one fuel cell,” Adv. Mater., vol. 20, no. 9, pp. 1644–1648, 2008.
    [64] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature, vol. 457, no. 7230, pp. 706–710, 2009.
    [65] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,”Nano Lett., vol. 9, no. 1, pp. 30–35, 2008.
    [66] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, et al., “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science, vol. 324, no. 5932, pp. 1312–1314, 2009.
    [67] C.-C. Lu, C. Jin, Y.-C. Lin, C.-R. Huang, K. Suenaga, and P.-W. Chiu, “Characterization of graphene grown on bulk and thin film nickel,” Langmuir, vol. 27, no. 22, pp. 13748–13753, 2011.
    [68] C.-C. Lu, Y.-C. Lin, C.-H. Yeh, J.-C. Huang, and P.-W. Chiu, “High mobility flexible graphene field-effect transistors with self-healing gate dielectrics,” ACS Nano, vol. 6, no. 5, pp. 4469–4474, 2012.
    [69] C.-C. Lu, Y.-C. Lin, Z. Liu, C.-H. Yeh, K. Suenaga, and P.-W. Chiu, “Twisting bilayer graphene superlattices,” ACS Nano, vol. 7, no. 3, pp. 2587–2594, 2013.
    [70] Y.-C. Lin, C. Jin, J.-C. Lee, S.-F. Jen, K. Suenaga, and P.-W. Chiu, “Clean transfer of graphene for isolation and suspension,” ACS Nano, vol. 5, no. 3, pp. 2362–2368, 2011.
    [71] Y.-C. Lin, C.-C. Lu, C.-H. Yeh, C. Jin, K. Suenaga, and P.-W. Chiu, “Graphene annealing: How clean can it be?,” Nano Lett., vol. 12, no. 1, pp. 414–419, 2012.
    [72] T. J. Booth, P. Blake, R. R. Nair, D. Jiang, E. W. Hill, U. Bangert, A. Bleloch, M. Gass, K. S. Novoselov, M. I. Katsnelson, et al., “Macroscopic graphene membranes and their extraordinary stiffness,” Nano Lett., vol. 8, no. 8, pp. 2442–2446, 2008.
    [73] Y. Zhang, L. Gomez, F. N. Ishikawa, A. Madaria, K. Ryu, C. Wang, A. Badmaev, and C. Zhou, “Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapor deposition,” J. Phys. Chem. Lett., vol. 1, no. 20, pp. 3101–3107, 2010.
    [74] D. Laplaze, L. Alvarez, T. Guillard, J. M. Badie, and G. Flamant, “Carbon nanotubes: Dynamics of synthesis processes,” Carbon, vol. 40, no. 10, pp. 1621–1634, 2002.
    [75] X. Li, W. Cai, L. Colombo, and R. S. Ruoff, “Evolution of graphene growth on Ni and Cu by carbon isotope labeling,” Nano Lett., vol. 9, no. 12, pp. 4268–4272, 2009.
    [76] H. Kim, C. Mattevi, M. R. Calvo, J. C. Oberg, L. Artiglia, S. Agnoli, C. F. Hirjibehedin, M. Chhowalla, and E. Saiz, “Activation energy paths for graphene nucleation and growth on Cu,” ACS Nano, vol. 6, no. 4, pp. 3614–3623, 2012.
    [77] G. A. López and E. J. Mittemeijer, “The solubility of C in solid Cu,” Scr. Mater., vol. 51, no. 1, pp. 1–5, 2004.
    [78] Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett., vol. 10, no. 2, pp. 490–493, 2010.
    [79] F. Varchon, R. Feng, J. Hass, X. Li, B. N. Nguyen, C. Naud, P. Mallet, J.-Y. Veuillen, C. Berger, E. H. Conrad, et al., “Electronic structure of epitaxial graphene layers on SiC: Effect of the substrate,” Phys. Rev. Lett., vol. 99, no. 12, p. 126805, 2007.
    [80] A. Grüneis and D. V. Vyalikh, “Tunable hybridization between electronic states of graphene and a metal surface,” Phys. Rev. B, vol. 77, no. 19, p. 193401, 2008.
    [81] P. Sutter, M. S. Hybertsen, J. T. Sadowski, and E. Sutter, “Electronic structure of few layer epitaxial graphene on Ru (0001),” Nano Lett., vol. 9, no. 7, pp. 2654–2660, 2009.
    [82] P. Poncharal, A. Ayari, T. Michel, and J.-L. Sauvajol, “Raman spectra of misoriented bilayer graphene,” Phys. Rev. B, vol. 78, no. 11, p. 113407, 2008.
    [83] Z. Ni, Y. Wang, T. Yu, Y. You, and Z. Shen, “Reduction of Fermi velocity in folded graphene observed by resonance Raman spectroscopy,” Phys. Rev. B, vol. 77, no. 23, p. 235403, 2008.
    [84] X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye sensitized solar cells,” Nano Lett., vol. 8, no. 1, pp. 323–327, 2008.
    [85] J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett., vol. 92, p. 263302, 2008.
    [86] S. Sun, L. Gao, and Y. Liu, “Enhanced dye-sensitized solar cell using graphene-TiO photoanode prepared by heterogeneous coagulation,” Appl. Phys. Lett., vol. 96, p. 083113, 2010.
    [87] Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, and H. Zhang, “Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells,” Small, vol. 6, no. 2, pp. 307–312, 2010.
    [88] E. W. Hill, A. Vijayaragahvan, and K. S. Novoselov, “Graphene sensors,” IEEE Sens. J., vol. 11, no. 12, pp. 3161–3170, 2011. [89] F. Yavari and N. Koratkar, “Graphene-based chemical sensors,” J. Phys. Chem. Lett., vol. 3, no. 13, pp. 1746–1753, 2012.
    [90] S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. B. Dommett, G. Evmenenko, S.-E. Wu, S.-F. Chen, C.-P. Liu, et al., “Graphene-silica composite thin films as transparent conductors,” Nano Lett., vol. 7, no. 7, pp. 1888–1892, 2007.
    [91] H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano, vol. 2, no. 3, pp. 463–470, 2008.
    [92] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett., vol. 9, no. 12, pp. 4359–4363, 2009.
    [93] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, et al., “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol., vol. 5, no. 8, pp. 574–578, 2010.
    [94] D. B. Farmer, R. Golizadeh-Mojarad, V. Perebeinos, Y.-M. Lin, G. S. Tulevski, J. C. Tsang, and P. Avouris, “Chemical doping and electron-hole conduction asymmetry in graphene devices,” Nano Lett., vol. 9, no. 1, pp. 388–392, 2008.
    [95] S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. K. Banerjee, “Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric,” Appl. Phys. Lett., vol. 94, no. 6, p. 062107, 2009.
    [96] X. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo, and R. S. Ruoff, “Large-area graphene single crystals grown by low pressure chemical vapor deposition of methane on copper,” J. Am. Chem. Soc., vol. 133, no. 9, pp. 2816–2819, 2011.
    [97] P. Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, W. S. Whitney, M. P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, et al., “Grains and grain boundaries in single-layer graphene atomic patchwork quilts,” Nature, vol. 469, no. 7330, pp. 389–392, 2011.
    [98] J. An, E. Voelkl, J. W. Suk, X. Li, C. W. Magnuson, L. Fu, P. Tiemeijer, M. Bischoff, B. Freitag, E. Popova, et al., “Domain (grain) boundaries and evidence of “twinlike” structures in chemically vapor deposited grown graphene,” ACS Nano, vol. 5, no. 4, pp. 2433–2439, 2011.
    [99] X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, Y. Zhu, et al., “Graphene films with large domain size by a two-step chemical vapor deposition process,” Nano Lett., vol. 10, no. 11, pp. 4328–4334, 2010.
    [100] H. Cao, Q. Yu, L. A. Jauregui, J. Tian, W. Wu, Z. Liu, R. Jalilian, D. K. Benjamin, Z. Jiang, J. Bao, et al., “Electronic transport in chemical vapor deposited graphene synthesized on Cu: Quantum Hall effect and weak localization,” Appl. Phys. Lett., vol. 96, no. 12, p. 122106, 2010.
    [101] H. Wang, G. Wang, P. Bao, S. Yang, W. Zhu, X. Xie, and W.-J. Zhang, “Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation,” J. Am. Chem. Soc., vol. 134, no. 8, pp. 3627–3630, 2012.
    [102] Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, et al., “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition,” Nat. Mater., vol. 10, no. 6, pp. 443– 449, 2011.
    [103] W. Wu, L. A. Jauregui, Z. Su, Z. Liu, J. Bao, Y. P. Chen, and Q. Yu, “Growth of single crystal graphene arrays by locally controlling nucleation on polycrystalline Cu using chemical vapor deposition,” Adv. Mater., vol. 23, no. 42, pp. 4898–4903, 2011.
    [104] S. Chen, H. Ji, H. Chou, Q. Li, H. Li, J. W. Suk, R. Piner, L. Liao, W. Cai, and R. S. Ruoff, “Millimeter-size single-crystal graphene by suppressing evaporative loss of Cu during low pressure chemical vapor deposition,” Adv. Mater., vol. 25, no. 14, pp. 2062–2065, 2013.
    [105] I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, and S. Smirnov, “Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene,” ACS Nano, vol. 5, no. 7, pp. 6069–6076, 2011.
    [106] Ç. Ö. Girit, J. C. Meyer, R. Erni, M. D. Rossell, C. Kisielowski, L. Yang, C.-H. Park, M. F. Crommie, M. L. Cohen, S. G. Louie, et al., “Graphene at the edge: Stability and dynamics,” Science, vol. 323, no. 5922, pp. 1705–1708, 2009.
    [107] Y. Zhang, Z. Li, P. Kim, L. Zhang, and C. Zhou, “Anisotropic hydrogen etching of chemical vapor deposited graphene,” ACS Nano, vol. 6, no. 1, pp. 126–132, 2011.
    [108] Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in graphene,” Phys. Rev. Lett., vol. 99, no. 24, p. 246803, 2007.
    [109] M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. von Klitzing, and J. H. Smet, “Graphene on a hydrophobic substrate: Doping reduction and hysteresis suppression under ambient conditions,” Nano Lett., vol. 10, no. 4, pp. 1149–1153, 2010.
    [110] M. I. Katsnelson, “Graphene: Carbon in two dimensions,” Mater. Today, vol. 10, no. 1, pp. 20–27, 2007.
    [111] K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, “Temperature-dependent transport in suspended graphene,” Phys. Rev. Lett., vol. 101, no. 9, p. 096802, 2008.
    [112] Z. Chen, Y.-M. Lin, M. J. Rooks, and P. Avouris, “Graphene nano-ribbon electronics,” Physica E, vol. 40, no. 2, pp. 228–232, 2007.
    [113] Y. Zhang, J. P. Small, W. V. Pontius, and P. Kim, “Fabrication and electric-field dependent transport measurements of mesoscopic graphite devices,” Appl. Phys. Lett., vol. 86, no. 7, p. 073104, 2005.
    [114] M. C. Lemme, T. J. Echtermeyer, M. Baus, and H. Kurz, “A graphene field-effect device,” IEEE Electron Device Lett., vol. 28, no. 4, pp. 282–284, 2007.
    [115] M. Ritala, K. Kukli, A. Rahtu, P. I. Räisänen, M. Leskelä, T. Sajavaara, and J. Keinonen, “Atomic layer deposition of oxide thin films with metal alkoxides as oxygen sources,” Science, vol. 288, no. 5464, pp. 319–321, 2000.
    [116] X. Wang, S. M. Tabakman, and H. Dai, “Atomic layer deposition of metal oxides on pristine and functionalized graphene,” J. Am. Chem. Soc., vol. 130, no. 26, pp. 8152– 8153, 2008.
    [117] T.-H. Hung, S. Krishnamoorthy, M. Esposto, D. Neelim Nath, P. Sung Park, and S. Rajan, “Interface charge engineering at atomic layer deposited dielectric/III-nitride interfaces,” Appl. Phys. Lett., vol. 102, no. 7, p. 072105, 2013.
    [118] I. Meric, C. R. Dean, A. F. Young, N. Baklitskaya, N. J. Tremblay, C. Nuckolls, P. Kim, and K. L. Shepard, “Channel length scaling in graphene field-effect transistors studied with pulsed current-voltage measurements,” Nano Lett., vol. 11, no. 3, pp. 1093–1097, 2011.
    [119] N. Petrone, I. Meric, J. Hone, and K. L. Shepard, “Graphene field-effect transistors with gigahertz-frequency power gain on flexible substrates,” Nano Lett., vol. 13, no. 1, pp. 121–125, 2012.
    [120] T. Miyazaki and N. Tezuka, “Giant magnetic tunneling effect in Fe/Al2O3/Fe junction,” J. Magn. Magn. Mater., vol. 139, no. 3, pp. L231–L234, 1995.
    [121] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, “Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions,” Phys. Rev. Lett., vol. 74, no. 16, pp. 3273–3276, 1995.
    [122] F. Shen, T. Zhu, X. H. Xiang, J. Q. Xiao, E. Voelkl, and Z. Zhang, “Observation of the barrier structure in magnetic tunnel junctions using high-resolution electron microscopy and electron holography,” Appl. Phys. Lett., vol. 83, no. 26, pp. 5482–5484, 2003.
    [123] S.-L. Li, H. Miyazaki, A. Kumatani, A. Kanda, and K. Tsukagoshi, “Low operating bias and matched input-output characteristics in graphene logic inverters,” Nano Lett., vol. 10, no. 7, pp. 2357–2362, 2010.
    [124] S.-L. Li, H. Miyazaki, H. Hiura, C. Liu, and K. Tsukagoshi, “Enhanced logic performance with semiconducting bilayer graphene channels,” ACS Nano, vol. 5, no. 1, pp. 500–506, 2010.
    [125] Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, and P. Avouris, “100-GHz transistors from wafer-scale epitaxial graphene,” Science, vol. 327, no. 5966, pp. 662–662, 2010.
    [126] L. Liao, J. Bai, Y.-C. Lin, Y. Qu, Y. Huang, and X. Duan, “High-performance top-gated graphene-nanoribbon transistors using zirconium oxide nanowires as high-dielectric constant gate dielectrics,” Adv. Mater., vol. 22, no. 17, pp. 1941–1945, 2010.
    [127] Y.-K. Choi, K. Asano, N. Lindert, V. Subramanian, T.-J. King, J. Bokor, and C. Hu, “Ultra-thin body SOI MOSFET for deep-sub-tenth micron era,” in Electron Devices Meeting, 1999. IEDM’99. Technical Digest. International, pp. 919–921, IEEE, 1999.
    [128] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, “FinFET-a self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Trans. Electron Devices, vol. 47, no. 12, pp. 2320–2325, 2000.
    [129] D. B. Farmer, Y.-M. Lin, and P. Avouris, “Graphene field-effect transistors with self aligned gates,” Appl. Phys. Lett., vol. 97, p. 013103, 2010.
    [130] A. Badmaev, Y. Che, Z. Li, C. Wang, and C. Zhou, “Self-aligned fabrication of graphene RF transistors with T-shaped gate,” ACS Nano, vol. 6, no. 4, pp. 3371–3376, 2012.
    [131] A. K. Petford-Long, Y. Q. Ma, A. Cerezo, D. J. Larson, E. W. Singleton, and B. W. Karr, “The formation mechanism of aluminum oxide tunnel barriers: Three-dimensional atom probe analysis,” J. Appl. Phys., vol. 98, no. 12, pp. 124904–124904, 2005.
    [132] D. B. Farmer, H.-Y. Chiu, Y.-M. Lin, K. A. Jenkins, F. Xia, and P. Avouris, “Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors,” Nano Lett., vol. 9, no. 12, pp. 4474–4478, 2009.
    [133] K. Gloos, P. J. Koppinen, and J. P. Pekola, “Properties of native ultrathin aluminium oxide tunnel barriers,” J. Phys.: Condens. Matter, vol. 15, no. 10, p. 1733, 2003.
    [134] S.-L. Li, H. Miyazaki, M. V. Lee, C. Liu, A. Kanda, and K. Tsukagoshi, “Complementary-like graphene logic gates controlled by electrostatic doping,” Small, vol. 7, no. 11, pp. 1552–1556, 2011.
    [135] L. G. Rizzi, M. Bianchi, A. Behnam, E. Carrion, E. Guerriero, L. Polloni, E. Pop, and R. Sordan, “Cascading wafer-scale integrated graphene complementary inverters under ambient conditions,” Nano Lett., vol. 12, no. 8, pp. 3948–3953, 2012.
    [136] J. Bai, L. Liao, H. Zhou, R. Cheng, L. Liu, Y. Huang, and X. Duan, “Top-gated chemical vapor deposition grown graphene transistors with current saturation,” Nano Lett., vol. 11, no. 6, pp. 2555–2559, 2011.
    [137] S. Y. Zhou, D. A. Siegel, A. V. Fedorov, and A. Lanzara, “Metal to insulator transition in epitaxial graphene induced by molecular doping,” Phys. Rev. Lett., vol. 101, no. 8, p. 086402, 2008.
    [138] Y. Mao, J. Yuan, and J. Zhong, “Density functional calculation of transition metal adatom adsorption on graphene,” J. Phys.: Condens. Matter, vol. 20, no. 11, p. 115209, 2008.
    [139] A. Varykhalov, M. R. Scholz, T. K. Kim, and O. Rader, “Effect of noble-metal contacts on doping and band gap of graphene,” Phys. Rev. B, vol. 82, no. 12, p. 121101, 2010.
    [140] Y.-J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, “Tuning the graphene work function by electric field effect,” Nano Lett., vol. 9, no. 10, pp. 3430–3434, 2009.
    [141] Y. Shi, K. K. Kim, A. Reina, M. Hofmann, L.-J. Li, and J. Kong, “Work function engineering of graphene electrode via chemical doping,” ACS Nano, vol. 4, no. 5, pp. 2689– 2694, 2010.
    [142] C. J. Fall, N. Binggeli, and A. Baldereschi, “Anomaly in the anisotropy of the aluminum work function,” Phys. Rev. B, vol. 58, no. 12, pp. R7544–R7547, 1998.
    [143] G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, “Doping graphene with metal contacts,” Phys. Rev. Lett., vol. 101, no. 2, p. 026803, 2008.
    [144] O. M. Nayfeh, T. Marr, and M. Dubey, “Impact of plasma-assisted atomic-layerdeposited gate dielectric on graphene transistors,” IEEE Electron Device Lett., vol. 32, no. 4, pp. 473–475, 2011.
    [145] G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. P. H. van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B.-H. Huisman, et al., “Flexible active-matrix displays and shift registers based on solution-processed organic transistors,” Nat. Mater., vol. 3, no. 2, pp. 106–110, 2004.
    [146] L. Zhou, A. Wanga, S.-C. Wu, J. Sun, S. Park, and T. N. Jackson, “All-organic active matrix flexible display,” Appl. Phys. Lett., vol. 88, no. 8, p. 083502, 2006.
    [147] T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, and T. Someya, “A rubberlike stretchable active matrix using elastic conductors,” Science, vol. 321, no. 5895, pp. 1468–1472, 2008.
    [148] G. Gelinck, P. Heremans, K. Nomoto, and T. D. Anthopoulos, “Organic transistors in optical displays and microelectronic applications,” Adv. Mater., vol. 22, no. 34, pp. 3778–3798, 2010.
    [149] T. Sekitani, U. Zschieschang, H. Klauk, and T. Someya, “Flexible organic transistors and circuits with extreme bending stability,” Nat. Mater., vol. 9, no. 12, pp. 1015–1022, 2010.
    [150] S. C. B. Mannsfeld, B. C. K. Tee, R. M. Stoltenberg, C. V. H. H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater., vol. 9, no. 10, pp. 859–864, 2010.
    [151] P. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, and S. D. Theiss, “Pentacene-based radio-frequency identification circuitry,” Appl. Phys. Lett., vol. 82, no. 22, pp. 3964–3966, 2003.
    [152] H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik, “Ultralow-power organic complementary circuits,” Nature, vol. 445, no. 7129, pp. 745–748, 2007.
    [153] H. Yan, Y. Zheng, R. Blache, C. Newman, S. Lu, J. Woerle, and A. Facchetti, “Solution processed top-gate n-channel transistors and complementary circuits on plastics operating in ambient conditions,” Adv. Mater., vol. 20, no. 18, pp. 3393–3398, 2008.
    [154] J.-H. Chen, M. Ishigami, C. Jang, D. R. Hines, M. S. Fuhrer, and E. D. Williams, “Printed graphene circuits,” Adv. Mater., vol. 19, no. 21, pp. 3623–3627, 2007.
    [155] B. J. Kim, H. Jang, S.-K. Lee, B. H. Hong, J.-H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett., vol. 10, no. 9, pp. 3464–3466, 2010.
    [156] U. Zschieschang, F. Ante, M. Schlörholz, M. Schmidt, K. Kern, and H. Klauk, “Mixed self-assembled monolayer gate dielectrics for continuous threshold voltage control in organic transistors and circuits,” Adv. Mater., vol. 22, no. 40, pp. 4489–4493, 2010.
    [157] A. Jedaa, M. Burkhardt, U. Zschieschang, H. Klauk, D. Habich, G. Schmid, and M. Halik, “The impact of self-assembled monolayer thickness in hybrid gate dielectrics for organic thin-film transistors,” Org. Electron., vol. 10, no. 8, pp. 1442–1447, 2009.
    [158] T. Fang, A. Konar, H. Xing, and D. Jena, “Carrier statistics and quantum capacitance of graphene sheets and ribbons,” Appl. Phys. Lett., vol. 91, no. 9, p. 092109, 2007.
    [159] J. Xia, F. Chen, J. Li, and N. Tao, “Measurement of the quantum capacitance of graphene,” Nat. Nanotechnol., vol. 4, no. 8, pp. 505–509, 2009.
    [160] K. M. McCreary, K. Pi, and R. K. Kawakami, “Metallic and insulating adsorbates on graphene,” Appl. Phys. Lett., vol. 98, no. 19, p. 192101, 2011.
    [161] L. Han, K. Song, P. Mandlik, and S. Wagner, “Ultraflexible amorphous silicon transistors made with a resilient insulator,” Appl. Phys. Lett., vol. 96, no. 4, p. 042111, 2010.
    [162] T. Sekitani, S. Iba, Y. Kato, Y. Noguchi, T. Someya, and T. Sakurai, “Ultraflexible organic field-effect transistors embedded at a neutral strain position,” Appl. Phys. Lett., vol. 87, no. 17, p. 173502, 2005.
    [163] H. Miyazaki, S. Li, A. Kanda, and K. Tsukagoshi, “Resistance modulation of multilayer graphene controlled by the gate electric field,” Semicond. Sci. Technol., vol. 25, no. 3, p. 034008, 2010.
    [164] B. C. Bunker, G. C. Nelson, K. R. Zavadil, J. C. Barbour, F. D. Wall, J. P. Sullivan, C. F. Windisch, M. H. Engelhardt, and D. R. Baer, “Hydration of passive oxide films on aluminum,” J. Phys. Chem. B, vol. 106, no. 18, pp. 4705–4713, 2002.
    [165] W. H. Rippard, A. C. Perrella, F. J. Albert, and R. A. Buhrman, “Ultrathin aluminum oxide tunnel barriers,” Phys. Rev. Lett., vol. 88, no. 4, p. 046805, 2002.
    [166] D. R. Jennison, P. A. Schultz, and J. P. Sullivan, “Evidence for interstitial hydrogen as the dominant electronic defect in nanometer alumina films,” Phys. Rev. B, vol. 69, no. 4, p. 041405, 2004.
    [167] P.-W. Chiu and S. Roth, “Transition from direct tunneling to field emission in carbon nanotube intramolecular junctions,” Appl. Phys. Lett., vol. 92, no. 4, p. 042107, 2008.
    [168] A. Pecora, L. Maiolo, M. Cuscunà, D. Simeone, A. Minotti, L. Mariucci, and G. Fortunato, “Low-temperature polysilicon thin film transistors on polyimide substrates for electronics on plastic,” Solid-State Electron., vol. 52, no. 3, pp. 348–352, 2008.
    [169] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, no. 7016, pp. 488–492, 2004.
    [170] M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J.-S. Park, J. K. Jeong, Y.-G. Mo,and H. D. Kim, “High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper,” Appl. Phys. Lett., vol. 90, no. 21, p. 212114, 2007.
    [171] V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: Reversible probing of charge transport in organic crystals,” Science, vol. 303, no. 5664, pp. 1644–1646, 2004.
    [172] A. Jedaa and M. Halik, “Toward strain resistant flexible organic thin film transistors,” Appl. Phys. Lett., vol. 95, no. 10, p. 103309, 2009.
    [173] M. Uno, K. Nakayama, J. Soeda, Y. Hirose, K. Miwa, T. Uemura, A. Nakao, K. Takimiya, and J. Takeya, “High-speed flexible organic field-effect transistors with a 3D structure,” Adv. Mater., vol. 23, no. 27, pp. 3047–3051, 2011.
    [174] E. Artukovic, M. Kaempgen, D. S. Hecht, S. Roth, and G. Grüner, “Transparent and flexible carbon nanotube transistors,” Nano Lett., vol. 5, no. 4, pp. 757–760, 2005.
    [175] E. S. Snow, P. M. Campbell, M. G. Ancona, and J. P. Novak, “High-mobility carbon nanotube thin-film transistors on a polymeric substrate,” Appl. Phys. Lett., vol. 86, no. 3, p. 033105, 2005.
    [176] Q. Cao, H.-S. Kim, N. Pimparkar, J. P. Kulkarni, C. Wang, M. Shim, K. Roy, M. A. Alam, and J. A. Rogers, “Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates,” Nature, vol. 454, no. 7203, pp. 495–500, 2008.
    [177] M. Ha, Y. Xia, A. A. Green, W. Zhang, M. J. Renn, C. H. Kim, M. C. Hersam, and C. D. Frisbie, “Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks,” ACS Nano, vol. 4, no. 8, pp. 4388–4395, 2010.
    [178] D.-M. Sun, M. Y. Timmermans, Y. Tian, A. G. Nasibulin, E. I. Kauppinen, S. Kishimoto, T. Mizutani, and Y. Ohno, “Flexible high-performance carbon nanotube integrated circuits,” Nat. Nanotechnol., vol. 6, no. 3, pp. 156–161, 2011.
    [179] A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys., vol. 81, no. 1, p. 109, 2009.
    [180] H. Medina, Y.-C. Lin, C. Jin, C.-C. Lu, C.-H. Yeh, K.-P. Huang, K. Suenaga, J. Robertson, and P.-W. Chiu, “Metal-free growth of nanographene on silicon oxides for transparent conducting applications,” Adv. Funct. Mater., vol. 22, no. 10, pp. 2123–2128, 2012.
    [181] C. H. Lui, Z. Li, K. F. Mak, E. Cappelluti, and T. F. Heinz, “Observation of an electrically tunable band gap in trilayer graphene,” Nat. Phys., vol. 7, no. 12, pp. 944–947, 2011.
    [182] J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto, “Graphene bilayer with a twist: Electronic structure,” Phys. Rev. Lett., vol. 99, no. 25, p. 256802, 2007.
    [183] S. Shallcross, S. Sharma, E. Kandelaki, and O. A. Pankratov, “Electronic structure of turbostratic graphene,” Phys. Rev. B, vol. 81, no. 16, p. 165105, 2010.
    [184] G. Li, A. Luican, J. M. B. L. dos Santos, A. H. C. Neto, A. Reina, J. Kong, and E. Y. Andrei, “Observation of Van Hove singularities in twisted graphene layers,” Nat. Phys., vol. 6, no. 2, pp. 109–113, 2009.
    [185] D. S. Lee, C. Riedl, T. Beringer, A. H. Castro Neto, K. von Klitzing, U. Starke, and J. H. Smet, “Quantum Hall effect in twisted bilayer graphene,” Phys. Rev. Lett., vol. 107, no. 21, p. 216602, 2011.
    [186] T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, “Controlling the electronic structure of bilayer graphene,” Science, vol. 313, no. 5789, pp. 951–954, 2006.
    [187] E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. L. dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. C. Neto, “Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect,” Phys. Rev. Lett., vol. 99, no. 21, p. 216802, 2007.
    [188] J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. K. Vandersypen, “Gate-induced insulating state in bilayer graphene devices,” Nat. Mater., vol. 7, no. 2, pp. 151–157, 2007.
    [189] A. Luican, G. Li, A. Reina, J. Kong, R. R. Nair, K. S. Novoselov, A. K. Geim, and E. Y. Andrei, “Single-layer behavior and its breakdown in twisted graphene layers,” Phys. Rev. Lett., vol. 106, no. 12, p. 126802, 2011.
    [190] Z. F. Wang, F. Liu, and M. Y. Chou, “Fractal Landau-level spectra in twisted bilayer graphene,” Nano Lett., vol. 12, no. 7, pp. 3833–3838, 2012.
    [191] J. Hass, F. Varchon, J.-E. Millan-Otoya, M. Sprinkle, N. Sharma, W. A. de Heer, C. Berger, P. N. First, L. Magaud, and E. H. Conrad, “Why multilayer graphene on 4H SiC (000-1) behaves like a single sheet of graphene,” Phys. Rev. Lett., vol. 100, no. 12, p. 125504, 2008.
    [192] M. Sprinkle, J. Hicks, A. Tejeda, A. Taleb-Ibrahimi, P. Le Fèvre, F. Bertran, H. Tinkey, M. C. Clark, P. Soukiassian, D. Martinotti, et al., “Multilayer epitaxial graphene grown on the SiC (000-1) surface; structure and electronic properties,” J. Phys. D: Appl. Phys., vol. 43, no. 37, p. 374006, 2010.
    [193] K. Kim, S. Coh, L. Z. Tan, W. Regan, J. M. Yuk, E. Chatterjee, M. F. Crommie, M. L. Cohen, S. G. Louie, and A. Zettl, “Raman spectroscopy study of rotated double-layer graphene: Misorientation-angle dependence of electronic structure,” Phys. Rev. Lett., vol. 108, no. 24, p. 246103, 2012.
    [194] L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L.-M. Peng, et al., “Repeated growth and bubbling transfer of graphene with millimetre-size single crystal grains using platinum,” Nat. Commun., vol. 3, p. 699, 2012.
    [195] Y. Pan, H. Zhang, D. Shi, J. Sun, S. Du, F. Liu, and H.-j. Gao, “Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001),” Adv. Mater., vol. 21, no. 27, pp. 2777–2780, 2009.
    [196] S. Lee, K. Lee, and Z. Zhong, “Wafer scale homogeneous bilayer graphene films by chemical vapor deposition,” Nano Lett., vol. 10, no. 11, pp. 4702–4707, 2010.
    [197] A. W. Robertson and J. H. Warner, “Hexagonal single crystal domains of few-layer graphene on copper foils,” Nano Lett., vol. 11, no. 3, pp. 1182–1189, 2011.
    [198] J. M. Wofford, S. Nie, K. F. McCarty, N. C. Bartelt, and O. D. Dubon, “Graphene islands on Cu foils: The interplay between shape, orientation, and defects,” Nano Lett., vol. 10, no. 12, pp. 4890–4896, 2010.
    [199] S. Horiuchi, T. Gotou, M. Fujiwara, R. Sotoaka, M. Hirata, K. Kimoto, T. Asaka, T. Yokosawa, Y. Matsui, K. Watanabe, et al., “Carbon nanofilm with a new structure and property,” Jpn. J. Appl. Phys., vol. 42, p. 1073, 2003.
    [200] Z. Liu, K. Suenaga, P. J. F. Harris, and S. Iijima, “Open and closed edges of graphene layers,” Phys. Rev. Lett., vol. 102, no. 1, p. 015501, 2009.
    [201] G. Trambly de Laissardière, D. Mayou, and L. Magaud, “Localization of Dirac electrons in rotated graphene bilayers,” Nano Lett., vol. 10, no. 3, pp. 804–808, 2010.
    [202] R. W. Havener, H. Zhuang, L. Brown, R. G. Hennig, and J. Park, “Angle-resolved Raman imaging of interlayer rotations and interactions in twisted bilayer graphene,” Nano Lett., vol. 12, no. 6, pp. 3162–3167, 2012.
    [203] Z. Ni, L. Liu, Y. Wang, Z. Zheng, L.-J. Li, T. Yu, and Z. Shen, “G-band Raman double resonance in twisted bilayer graphene: Evidence of band splitting and folding,” Phys.Rev. B, vol. 80, no. 12, p. 125404, 2009.
    [204] Y. Wang, Z. Ni, L. Liu, Y. Liu, C. Cong, T. Yu, X. Wang, D. Shen, and Z. Shen, “Stacking dependent optical conductivity of bilayer graphene,” ACS Nano, vol. 4, no. 7, pp. 4074–4080, 2010.
    [205] Y. Y. Wang, Z. H. Ni, Z. X. Shen, H. M. Wang, and Y. H. Wu, “Interference enhancement of Raman signal of graphene,” Appl. Phys. Lett., vol. 92, no. 4, p. 043121, 2008.
    [206] L. G. Cancado, M. A. Pimenta, B. R. A. Neves, M. S. S. Dantas, and A. Jorio, “Influence of the atomic structure on the Raman spectra of graphite edges,” Phys. Rev. Lett., vol. 93, no. 24, p. 247401, 2004.
    [207] G. M. Rutter, N. P. Guisinger, J. N. Crain, P. N. First, and J. A. Stroscio, “Edge structure of epitaxial graphene islands,” Phys. Rev. B, vol. 81, no. 24, p. 245408, 2010.
    [208] J. Tian, H. Cao, W. Wu, Q. Yu, and Y. P. Chen, “Direct imaging of graphene edges: Atomic structure and electronic scattering,” Nano Lett., vol. 11, no. 9, pp. 3663–3668, 201

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE