簡易檢索 / 詳目顯示

研究生: 邱駿朋
Chiu, Chun-Peng
論文名稱: 玻璃基板上沉積In-Ga-Zn-O透明導電膜之薄膜分析與光電特性
The thin film analysis and optoelectronic properties of transparent conductive Indium-Gallium-Zinc-Oxide films on glass substrates
指導教授: 楊士禮
Yang, Sidney S.
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 97
中文關鍵詞: 氧化銦鎵鋅溶液法薄膜電晶體
外文關鍵詞: IGZO, solution-based, TFT
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文在探討以共沉澱(co- precipitation)法為製作基礎,利用三種鹽類In(NO3)3、GaCl3、Zn(NO3)2分別與2種鹼類NaOH、NH4OH當前趨物,再經由不同的兩種過程:水熱法和鍛燒法去製作出IGZO溶液。有別於常見的濺鍍沉積方式,此處利用旋轉塗佈方式將溶液在室溫下沉積在玻璃基板中,再經由不同的熱處理溫度去觀察其薄膜特性。
    利用DLS、SEM、XPS去觀察粒子型態及組成,以及利用XRD觀察不同後處理溫度的薄膜其結晶情形。XRD顯示以水熱法製膜的樣品上從100度C到250度C以內有看到繞射峰值,並於250度到800度之間呈現非結晶相,直到超過800度C有一種新的結晶態IGZO4出現。並由UV-vis量測發現IGZO薄膜在可見光區有高達90%以上的穿透率,最後將材料在室溫下塗佈在TFT的通道區域上,觀察元件的開關特性。


    In this thesis, IGZO solutions based on a co-precipitation method were further fabricated using two processes: hydrothermal route and calcination route. In(NO3)3、GaCl3、Zn(NO3)2 was used as a salt precursor and NaOH、NH4OH was used as an alkaline precursor. Differing from the common sputtering deposition techniques, the solution was deposited by a spin-coating method onto glass substrates, at room temperature, and subsequently the IGZO thin films were observed via differential heat treatment.
    DLS、SEM and XPS were used to examine grain morphology and components and XRD was used to analyze the crystalline phase of thin films via differential heat treatment. XRD patterns indicated that the sample prepared using the hydrothermal route revealed clear diffraction peaks within the range of 100-250℃ and amorphous phase within the range of 250-800℃. As well, a new crystalline phase IGZO4 was shown beyond 800℃. Based on UV-VIS spectra, the transmittance of IGZO thin film in the visible range was measured above 90 %. Finally, we coated material on the TFT channel area and observed on-off properties of the device.

    第一章 緒論 16 1.1 前言 16 1.2 透明導電膜的特性 17 1.3 研究動機與實驗方向 19 第二章 文獻回顧 20 2.1 透明導電膜的光學性質與電學性質 20 2.1.1 光學性質探討 20 2.1.2 自由電氣模型與載子遷移率 22 2.2 IGZO組成結構介紹 25 第三章 實驗方法與步驟 30 3.1 實驗流程 30 3.2奈米材料的製造 31 3.2.1 材料的製作步驟 32 3.2.1.1 以NaOH為鹼劑 32 3.2.1.2 以NH4OH為鹼劑 34 3.2.2 水熱法(Hydrothermal Process) 35 3.2.3 鍛燒法 36 3.3 動態光散射法測定 38 3.4 光學性質分析 39 3.5 X光繞射分析(X-ray diffraction, XRD) 40 3.6 熱重分析(Thermogravimetry Analysis, TGA) 40 3.7 X射線光電子能譜圖(XPS) 41 3.8 掃描式電子顯微鏡( Scanning Electron Microscopy, SEM) 43 3.9 製作底部閘極結構的非晶薄膜電晶體流程 43 3.10 薄膜電晶體的基本公式和特性 48 第四章 結果與討論 51 4.1 材料調配流程 51 4.2 奈米金屬氧化物粒徑觀測 54 4.2.1動態光散射法測定粒子大小 54 4.2.2 SEM觀測 57 4.3 XRD分析 62 4.3.1 經鍛燒過程的XRD分析 63 4.3.2 經水熱過程的XRD分析 65 4.4 TGA熱重分析 71 4.5 光學量測 74 4.6 XPS 78 4.7 元件特性量測 84 4.7.1 IGZO薄膜在元件上的影像觀測 85 4.7.2 電性量測 87 第五章 結論與未來展望 94 5.1 結論 94 5.2 未來展望 95 References 96

    [1] H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler,
    Appl. Phys. Lett., 86, 013503 (2005).
    [2] N. L. Dehuff, E. S. Kettenring, D. Hong, H. Q. Chiang, J. F. Wager, R.
    L. Hoffman, and D. A. Keszler, J. Appl. Phys., 97, 064505 (2005).
    [3] M. Ofuji, K. Abe, H. Shimizu, N. Kaji, R. Hayashi, M. Sano, H.
    Kumomi, K. Nomura, T. Kamiya, and H. Hosono: IEEE ELECTRON
    DEVICE LETTERS, 28, 273-275, (2007).
    [4] Kim J S, Granstr¨om M, Friend R H, Johansson N, Salaneck
    WR, Daik R, FeastWJ and Cacialli F 1998 J. Appl. Phys.
    84 6859
    [5]Ohmsha Ltd. (Techniques of Transparent Electroconductive Films),
    P51, (1999)
    [6] K. L. Chopra, S. Magor and D. K. Pandya, Thin Solid Films, 102, 1
    (1983)
    [7] M. Fox, Optical Properties of Solids, published by Oxford University
    Press92001) 29.
    [8] K. P. H. Luia and F. A. Hegmann, JOURNAL OF APPLIED
    PHYSICS, Vol 93 (2003)
    [9] T .-I. Jeon et al., Synth. Met. 135, 451 (2003).
    [10]楊明輝,”透明導電膜”, 藝軒圖書出版社,2008年2月,p37-39
    [11]楊明輝,”透明導電膜”, 藝軒圖書出版社,2008年2月,p16-18
    [12] J.R. Bellingham, W.A. Philips and C.J. Adkins, J. Mater. Sci. Lett. 11 (1992), p. 263
    [13] J. R. Bellingham, W. A. Phillips and C. J. Adkins, J. Phys. Condens.
    Matter2 (1990) 6207
    [14] H. Hosono, K. Nomura, Y. Ogo, T. Uruga and T. Kamiya, J.
    Non-Cryst. Solids 354 (2008), p. 2796
    [15] H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, Appl. Phys. Lett. 86 (2005).
    [16] D. Y. Cho, J. Song, K. D. Na, C. S. Hwang,J. H. Jeong, J. K. Jeong,
    and Y-Gon Mo, Appl. Phys. Lett. 94, 112112 (2009)
    [17] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H.
    Hosono: Jpn. J. Appl. Phys. vol. 45 (2006) 4303~4308
    [18] P. Barquinha,z L. Pereira, G. Gonçalves, R. Martins, and E.
    Fortunato: Journal of the Electrochemical Society , vol. 156,
    H161-H168 (2009)
    [19] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H.
    Hosono: Jpn. J. Appl. Phys. vol. 45 (2006) 4303~4308
    [20]W. Stumm and J. J. Morgan. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, John Wiley, New York (1996).
    [21] R. L. Coble, “Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models” J. Appl. Phys. 32 (1961) 787
    [22] J. Tauc, R. Gigorovici and A. Vancu: Phys. Status Solidi 15 (1966)
    627.
    [23] A. C. Tickle, Thin-Film Transistors , John Wiley and Sons, pp. 9-13 (1969).
    [24] Vinay Gupta and Abhai Mansingh, “Influence of Postdeposition Annealing on The Structural and Optical Properties of Sputtered Zinc Oxide Film”, J. Appl. Phys. 2 (1996) 1063-1073.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE