簡易檢索 / 詳目顯示

研究生: 吳承翰
Cheng-Han Wu
論文名稱: 轉向壓印微影技術於有機薄膜電晶體上之應用
Reversal Imprint Lithography Technology for Organic Thin Film Transistor Applications
指導教授: 連振炘
Chen-Hsin Lien
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 56
中文關鍵詞: 轉向壓印有機薄膜電晶體P3HT
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本論文將轉向微影壓印技術應用於有機薄膜電晶體的製程中,首先濺鍍下電極,接著沈積parylene C作為介電層,旋塗P3HT作為有機半導體層,最後以轉向壓印的方法將模具上的汲極源極金屬圖樣黏附於P3HT層上,並討論模具及基底的處理,與各種製程條件對壓印結果產生的影響。
    由實驗結果得知,在汲極源極金電極與P3HT層之間以鈦作為黏著層,可提高壓印效果。此外在模具上預先蒸鍍F13TCS(脫膜劑)以及對P3HT層做O2 plasma 處理皆可增加壓印圖樣的完整度。本實驗中,可以利用傳統微影製程製作而成的模具,成功地藉由壓印的方式將電晶體通道長度縮小至2μm。
    在電晶體特性方面,由於氧氣會使得P3HT的摻雜濃度上升,致使其導電度增加,所以經過O2 plasma處理的樣本漏電流約為1.3×10-10A/um,且電流-電壓特性接近一線性電阻。在去除O2 plasma處理步驟,同時因配合P3HT操作溫度而降低壓印溫度後,漏電流可降到1.2×10-12A/um以下,臨界電壓(Vth)約為20V,載子遷移率為2.2×10-4cm2/V-s,Ion/Ioff比約為1000,且特性曲線有明顯改善,但在此操作條件下會使得壓印圖樣良率降低。


    Abstract
    In this thesis, we apply reversal imprint technology into the fabrication process of organic thin-film-transistor. First, we sputter bottom gate metal on Si wafer, then evaporate parylene C as dielectric layer and spin coating P3HT as organic active layer. Finally, define S/D pattern by imprint metal on P3HT layer. We will discuss the factors that influence imprint results, including surface treatment, and parameters of the imprint process.
    As the result of this experiment, sputtering Ti as adhesion layer between S/D gold contact and P3HT layer can improve imprint result. Also, pre-coating F13TCS on mold and O2 plasma treatment on P3HT layer can improve the imprint yield, too. At last, we can scale down the channel length to 2um by the mold that made with traditional lithography technology.
    Because O2 will induce raise of P3HT doping concentration and increase the conductivity, transistors on the sample with O2 plasma have leakage current about 1.3×10-10A/um, and Id-Vd characteristics is nearly like a resistor. As we take off the O2 plasma process and reduce the imprint temperature due to match up operation temperature of P3HT, the leakage current can cut down to 1.2×10-12A/um, and Vth is about 20V;mobility is 2.2×10-4cm2/V-s and Ion/Ioff ratio is 1000. Also, the Id-Vd characteristics is obviously improved. But under this imprint condition, the yield of imprint pattern is poor.

    目錄 第一章 序論……………………………………………………………1 第二章 奈米壓印的演進與轉向壓印與微影技術……………………4 2.1 奈米壓印微影技術…………………………………………….4 2.2 步進閃光壓印微影技術……………………………………….6 2.3 微接觸轉印…………………………………………………….8 2.4 轉向壓印微影技術…………………………………………….9 第三章 有機薄膜電晶體與P3HT材料特性…………………...…….11 3.1 有機薄膜電晶體簡介……..…………………………….…….11 3.2 有機薄膜電晶體操作模式……………………………………13 3.3 P3HT材料特性………………………………………………..17 第四章 實驗方法與結果討論…………………………………………20 4.1 製程儀器簡介………………………………………………….20 4.1.1 電感耦合電漿式矽蝕刻系統…………………………..20 4.1.2 電子鎗真空蒸鍍系統…………………………………..21 4.1.3 光阻去除系統…………………………………………..21 4.1.4 高分子化學氣相沈積系統……………………………..24 4.1.5 NX2000奈米壓印系統…………………………………26 4.2 模具製備與壓印流程………………………………………….27 4.2.1 模具製備………………………………………………..27 4.2.1.1 塗佈脫膜劑…………………………………...…29 4.2.1.2 光罩圖樣………………………………………...31 4.2.2 壓印流程………………………………………………..31 4.2.2.1 旋塗P3HT有機半導體層………………………36 4.3 實驗結果與討論…………………………………………….…37 4.3.1 測試壓印金屬與P3HT附著力………..…………….….37 4.3.2 脫膜劑對壓印結果的影響……………………………..39 4.3.3 O2 plasma對P3HT的處理對壓印結果的影響…………41 4.3.4 元件量測結果…………………………………………..43 4.3.5 實驗討論………………………………………………..48 第五章 結論……………………………………………………………51 參考文獻 圖表目錄 圖2-1 傳統奈米壓印技術及其製程……………………………………...5 圖2-2 步進閃光壓印微影步驟示意圖………………………………….7 圖2-3 微接觸轉印製程步驟示意圖……………………………………...8 圖2-4 轉向壓印步驟示意圖…………………………………………….10 圖2-5 轉向壓印的三種壓印模式……………………………………….10 圖3-1 OTFT元件結構…………………………………………………...16 圖3-2 有機薄膜電晶體操作示意圖…………………………………….17 圖3.3 P3HT高分子鍊結構圖……………………………………………19 圖4-1(a) ICP構造示意圖………………………………………………..22 圖4-1(b) ICP機台外觀…………………………………………………..23 圖4-2(a) E-gun 工作原理示意圖……………………………………….23 圖4-2(b) E-gun機台外觀………………………………………………..24 圖4-3光阻去除系統示意圖……………………………………………..25 圖4-4 聚對二甲基苯沉積系統原理流程圖…………………………….25 圖4-5 壓印製程溫度、壓力與時間關係圖…………………………….27 圖4-6 模具製備流程圖………………………………………………….28 圖4-7 F13TCS分子與模具表面反應示意圖…………………………….30 圖4-8 反應容器照片…………………………………………………….30 圖4-9 源極╱汲極光罩Layout示意圖………………..………………..32 圖4-10(a) 壓印流程圖(一)……………………………………………33 圖4-10(b) 壓印流程圖(二)………………………………………….…34 圖4-11 金屬與P3HT附著力壓印測試示意圖…………………………38 圖4-12 金屬與P3HT附著力壓印測試結果……………………………39 圖4-13 測試脫膜劑對壓印結果影響之壓印條件……………………...40 圖4-14 光學顯微鏡下的壓印結果……………………………………...40 圖4-15 整片晶片壓印後外觀…………………………………………...41 圖4-16 P3HT薄膜經過O2 plasma處理與否的壓印結果……………...42 圖4-17 未完全剝離的源極╱汲極圖樣……………….………………..42 圖4-18 α-stepper樣本表面平坦度掃瞄圖…………………………….43 圖4-19 第一次量測之Id-Vd圖………………………………………….44 圖4-20 低溫且未經O2 plasma處理之Id-Vd圖………………….……...46 圖4-21 低溫且未經O2 plasma處理之Id-Vg圖…………………………47 圖4-22 當Vg>0時之電子漏電流……………………………………….47 圖4-23 低溫且無O2 plasma處理之壓印結果…………………….……48 表4-1 源極╱汲極光罩尺寸…………………………………………….32 表4-2 Parylene C製程參數……………………………………………...36 表4-3 Parylene與光阻蝕刻參數………………………………………...36

    參考文獻
    [1] X. D. Huang, L.-R. Bao, X. Cheng, L. J. Guo, S. W. Pang, and A. F. Yee, “Reversal imprinting by transferring polymer from mold to substrate”, Journal Vacuum Science Technology B, Vol.20(6), pp. 2872-2876, 2002.
    [2] G□nter Schmid, Hagen Klauk, Marcus Halik, Ute Zschieschang, Florian Eder and Christine Dehm, “Polymer Electronics”, mstnews S/03, pp. 19-20, 2003.
    [3] Guangming Wang, James Swensen, Daniel Moses, and Alan J. Heeger, Journal of applied physics, 93(10), 2003.
    [4] ITRS, International Technology Roadmap for semiconductors Conference.
    [5] C. M. Sotomayor Torres, S. Zankovych, J. Seekamp, A. P. Kam, C. Clavijo Cede□o, T. Hoffmann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiessel et al., “Nanoimprint lithography: an alternative nanofabrication approach, Materials”, Science and Engineering: C, Vol. 23, Issues 1-2, pp. 23-31, 15 JAN 2003.
    [6] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, “Nanoimprint lithography”, Journal Vacuum Science Technology B, Vol.14(6), pp. 4129-4133, 1996.
    [7] H. C. Scheer, H Schulz, T, Hoffman, and C. M. Sotomayor Torres, J. Vac. Sci. Technol. 16, 3917(1998).
    [8] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt, C. G. Willson, Proc. of SPIE 3676 379(1999).
    [9] Y. Xia, G. M. Whitesides, Angew. Chem. Int., 37, 500(1998).
    [10] X. D. Huang, L. R. Bao, X. Cheng, L. J. Guo, S. W. Pang, and A. F. Yee, J. Vac. Sci. Technol. B 20, 2872(2002).
    [11] L. R. Bao, X. Cheng, X. D. Huang, L. J. Guo, S. W. Pang, and A. F. Yee, J. Vac. Sci. Technol. B 20, 2881(2002).
    [12] Y. Y. Lin, D. J. Gundlach, S. Nelson, T. N. Lett., 18, 606, 1997
    [13] G. Horowitz, X. Peng, D. Fichou, F. Garnier, Synth. Met. 51, 419, 1992.
    [14] A. Dodabalapur, L. Torsi, H. E. Katz, Science 1995, 268, 270.
    L. Torsi, A. Dodabalapur, A. J. Lovinger, H. E. Katz, R. Ruel, D. D. Davis, K. W. Baldwin, Chem. Master. 7, 2247, 1995.
    [15] H. E. Katz, L. Torsi, A. Dodabalapur, Chem. Master. 7, 2235, 1995.
    [16] R. Hajlaoui, G. Horowitz, F. Garnier, A. Arce-Brouchet, L. Laigre, A. Elkassmi, F. Demanze, F. Kouki, Adv. Mater. 9, 389, 1997.
    [17] Z. Bao, A. J. Lovinger, J. Brown, J. Am. Chem. Soc. 1998, 120, 207.
    [18] H. Fuchigami, A. Tsumura, H. Koezuka, Appl. Phys. Lett. 63, 1993 1372.
    [19] S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, CH.7, 1981.
    [20] A. R. Brown, C. P. Jarrett, D. M. de Leeuw and M. Matters, Synth. Met. 88, 37-55, 1997.
    [21] Christos D. Dimitrakopoulos, Parick R. Malenfant, Adv. Mater., 14, No2, January 16, 2002.
    [22] Christos D. Dimitrakopoulos, D. J. Mascaro, IBM J. RES. & DEV. 45(1), 11, 2001.
    [23] A. Assadi, C. Svensson, M. Willander, O. Inganas, Appl. Phy. Lett. 53(3), July, 18, 1988.
    [24] Sirringhaus, Henning;Tessler, Nir;et al., Science, Vol.280 Issue 5370, 1741, 1998.
    [25] Sirringhaus, H. Brown, P. J. Friend, R. H. Nielsen, M. M. Bechgaard, K. Langeveld-Voss, B. M. W. et. al., Synthetic Metals, Vol. 111-112, 129-132, June 1, 2000.
    [26] M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, L. Montelius, Microelectronic Engineering, 61-62, 441(2002).
    [27] T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, and Y. Ueda, Langmuir 15, 4321(1999)
    [28] Jem-Kun Chen, Fu-Hsiang Ko, Kuen-Fong Hsieh, Cheng-Tung Chou, Feng-Chih Chang, J. Vac. Sci. Technol. B 22, 3233(2004).
    [29] G. Paasch, T. Lindner, and S. Scheinert, Synth. Met. 132, 97, 2002.
    [30] D. R. Hines, S. Mezhenny, M. Breban, E. D. Williams, V. W. Ballarotto, G. Esen, A. Southard, M. S. Fuhrer, APPLIED PHYSICS LETTERS , 86, 163101 (2005).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE