研究生: |
楊宗翰 |
---|---|
論文名稱: |
絕緣閘雙極性電晶體模組中之銅-鋁楔型打線在電遷移實驗下之破壞機制 Failure mechanisms of Cu-Al wedge bonding under electromigration test in insulated-gate bipolar transistor (IGBT) modules |
指導教授: | 歐陽汎怡 |
口試委員: |
陳信文
王朝弘 歐陽汎怡 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 126 |
中文關鍵詞: | 銅打線 、電遷移 |
外文關鍵詞: | wire bond, electromigration |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於高效率及快速的轉換性,絕緣閘雙極性電晶體(IGBT)模組成為了在電動車及油電混合車的主要元件。在模組中,連結模組中各個元件的方式為粗打線科技。在現今的打線科技中,因為擁有較高的電流容載率及價格便宜的優勢,銅線已經漸漸被指定為主要的打線材料。然而很少文獻提及楔形銅打線在鋁金屬化薄膜上之接點的電遷移導致破壞機制。在本篇研究當中,我們探討了銅-鋁楔型打線系統在環境溫度175℃下的大電流破壞機制。電流密度範圍從4x104 到1X105 A/cm2。此篇研究也分析了試片電阻變化對於銅線和鋁金屬墊的微結構改變影響。實驗結果顯示出在電流密度4x104 到1X105 A/cm2範圍中,無論在何種電流方向狀況下,異常的裂縫總形成在第二接點上且明顯伴隨著介金屬化合物成長。我們推論此異常的裂縫形成原因是第二接點的接點面積較第一接點的接點面積小,導致第二接點承受較高的焦耳熱,加速了介金屬化合物生長。越多的介金屬化合物生成造成更多的裂縫在接點中。此外發現電流擁擠效應可能會發生在接點的後跟處,並且進一步使用電流密度模擬來探討。我們也藉由計算相對應的化學位能差及電遷移所導致擴散流量來解釋破壞機制。當電流密度上升至1x10⁵ A/cm²,銅線會因為大量的焦耳熱生成在0.5小時內融化。
Reference
[1] J. Onuki, Y. Chonan, T. Komiyama et al., “A Void Free Soldering Process in Large-Area, High Power Insulated Gate Bipolar Transistor Modules,” Japanese Journal of Applied Physics, vol. 40, pp. 3985, 2001.
[2] W. Wu, M. Held, P. Jacob et al., "Investigation on the long term reliability of power IGBT modules." pp. 443-448.
[3] P. Cova, and F. Fantini, “On the effect of power cycling stress on IGBT modules,” Microelectronics Reliability, vol. 38, no. 6, pp. 1347-1352, 1998.
[4] H. Ye, M. Lin, and C. Basaran, “Failure modes and FEM analysis of power electronic packaging,” Finite Elements in Analysis and Design, vol. 38, no. 7, pp. 601-612, 2002.
[5] M. Ciappa, “Selected failure mechanisms of modern power modules,” Microelectronics reliability, vol. 42, no. 4, pp. 653-667, 2002.
[6] Z. Zhong, “Wire bonding using copper wire,” Microelectronics International, vol. 26, no. 1, pp. 10-16, 2009.
[7] H. Xu, C. Liu, V. Silberschmidt et al., “A micromechanism study of thermosonic gold wire bonding on aluminum pad,” Journal of applied physics, vol. 108, no. 11, pp. 113517-113517-8, 2010.
[8] C. Xu, T. Sritharan, and S. Mhaisalkar, “Thin film aluminum–gold interface interactions,” Scripta materialia, vol. 56, no. 6, pp. 549-552, 2007.
[9] A. Karpel, G. Gur, Z. Atzmon et al., “Microstructural evolution of gold–aluminum wire-bonds,” Journal of materials science, vol. 42, no. 7, pp. 2347-2357, 2007.
[10] M. D'Olieslaeger, L. De Schepper, W. De Ceuninck et al., “The influence of current stress on the ageing of Au-Al1% Si (1% Cu) ball-bond contacts studied by SEM and EDX,” Microelectronic Engineering, vol. 19, no. 1, pp. 579-582, 1992.
[11] B. Krabbenborg, “High current bond design rules based on bond pad degradation and fusing of the wire,” Microelectronics Reliability, vol. 39, no. 1, pp. 77-88, 1999.
[12] H. Orchard, and A. Greer, “Electromigration effects on intermetallic growth at wire-bond interfaces,” Journal of electronic materials, vol. 35, no. 11, pp. 1961-1968, 2006.
[13] E. Zin, N. Michael, S. Kang et al., "Mechanism of electromigration in Au/Al wirebond and its effects." pp. 943-947.
[14] H.-J. Kim, J. Y. Lee, K.-W. Paik et al., “Effects of Cu/Al intermetallic compound (IMC) on copper wire and aluminum pad bondability,” Components and Packaging Technologies, IEEE Transactions on, vol. 26, no. 2, pp. 367-374, 2003.
[15] J. Ling, T. Xu, R. Chen et al., "Cu and Al-Cu composite-material interconnects for power devices." pp. 1905-1911.
[16] "http://smithsonianchips.si.edu/ice/cd/PKG_BK/CHAPT_09.PDF."
[17] T. Kurosu, K. Khoo, Y. Nakamura et al., “Reliability Enhancement of Thick Al-Cu Wire Bonds in IGBT Modules Using Al2Cu Precipitates,” Materials Transactions, vol. 53, no. 2, pp. 453-456, Feb, 2012.
[18] A. Coucoulas, "Hot Work Ultrasonic Bonding-A Method of Facilitating Metal Flow By Restoration Processes." pp. 539-556.
[19] "http://www.isu.edu.tw/upload/81201/48/news/postfile_40135.pdf."
[20] C. Breach, “What is the future of bonding wire? Will copper entirely replace gold?,” Gold bulletin, vol. 43, no. 3, pp. 150-168, 2010.
[21] G. G. Harman, Wire bonding in microelectronics: materials, processes, reliability, and yield: McGraw-Hill New York, 1997.
[22] J. Qi, N. C. Hung, M. Li et al., “Effects of process parameters on bondability in ultrasonic ball bonding,” Scripta materialia, vol. 54, no. 2, pp. 293-297, 2006.
[23] Langenec.B, “EFFECTS OF ULTRASOUND ON DEFORMATION CHARACTERISTICS OF METALS,” Ieee Transactions on Sonics and Ultrasonics, vol. SU13, no. 1, pp. 1-&, 1966.
[24] K.O.Leedy G.G.Harman, “AN EXPERIMENTAL MODEL OF THE MICROELECTRONIC ULTRASONIC WIRE BONDING MECHANISM,” ANNUAL PROCEEDINGS REL. PHYSICS, vol. 10, pp. 49-56, 07 Apr 1972, 1972.
[25] C. Breach, and F. Wulff, “A brief review of selected aspects of the materials science of ball bonding,” Microelectronics Reliability, vol. 50, no. 1, pp. 1-20, 2010.
[26] I. Lum, M. Mayer, and Y. Zhou, “Footprint study of ultrasonic wedge-bonding with aluminum wire on copper substrate,” Journal of electronic materials, vol. 35, no. 3, pp. 433-442, 2006.
[27] I. Qin, A. Shah, C. Huynh et al., “Role of process parameters on bondability and pad damage indicators in copper ball bonding,” Microelectronics Reliability, vol. 51, no. 1, pp. 60-66, 2011.
[28] Y. Tian, C. Wang, I. Lum et al., “Investigation of ultrasonic copper wire wedge bonding on Au/Ni plated Cu substrates at ambient temperature,” journal of materials processing technology, vol. 208, no. 1, pp. 179-186, 2008.
[29] C.-T. Su, and C.-J. Yeh, “Optimization of the Cu wire bonding process for IC assembly using Taguchi methods,” Microelectronics reliability, vol. 51, no. 1, pp. 53-59, 2011.
[30] H. Xu, C. Liu, V. Silberschmidt et al., “Effect of bonding duration and substrate temperature in copper ball bonding on aluminium pads: A TEM study of interfacial evolution,” Microelectronics Reliability, vol. 51, no. 1, pp. 113-118, 2011.
[31] M. Schneider-Ramelow, U. Geißler, S. Schmitz et al., “Development and Status of Cu Ball/Wedge Bonding in 2012,” Journal of electronic materials, vol. 42, no. 3, pp. 558-595, 2013.
[32] C.D.Breach. F. Wulff, Saraswati, K. Dittmer, M. Garnier, “Further Characterisation and Comparison of Intermetallic Growth in Copper and Gold Ballbonds an Aluminium Metallization,” Proceedings of Semicon Technical Symposium S2, May 6th Singapore (2004).
[33] Z. Zhong, “Overview of wire bonding using copper wire or insulated wire,” Microelectronics Reliability, vol. 51, no. 1, pp. 4-12, 2011.
[34] J. F. Shackelford, and W. Alexander, CRC materials science and engineering handbook: CRC press, 2010.
[35] D. B. Miracle, S. L. Donaldson, and G. F. Vander Voort, ASM handbook: Asm International Materials Park, OH, USA, 2001.
[36] W. F. Gale, and T. C. Totemeier, Smithells metals reference book: Butterworth-Heinemann, 2003.
[37] S. Na, T. Hwang, J. Park et al., "Characterization of Intermetallic Compound (IMC) growth in Cu wire ball bonding on Al pad metallization." pp. 1740-1745.
[38] K. J. Range and H. Buechler,, “Hochdrucksynthese und Kristallstruktur von Al3Au8,” Journal of Less Common Metals, vol. 154, pp. 251-260, 1989.
[39] E. Philofsky, “Intermetallic formation in gold-aluminum systems,” Solid-State Electronics, vol. 13, no. 10, pp. 1391-1394, 1970.
[40] K.-n. Tu, Electronic thin film reliability: Cambridge University Press Cambridge, 2010.
[41] H. Xu, C. Liu, V. Silberschmidt et al., “Intermetallic phase transformations in Au–Al wire bonds,” Intermetallics, vol. 19, no. 12, pp. 1808-1816, 2011.
[42] H. E. Swanson, R. K. Fuyat, and G. M. Ugrinic, Standard X-ray diffraction powder patterns: US Department of Commerce, National Bureau of Standards, 1985.
[43] R. T. Downs, and M. Hall-Wallace, “The American Mineralogist crystal structure database,” American Mineralogist, vol. 88, no. 1, pp. 247-250, 2003.
[44] H. Buechler, K. J. Range, “Hochdruck-Hochtemperatursynthese und Kristall-strucktur von Al11Au4 und AlAu,” Journal of Less-Common Metals, vol. 160, pp. 143-152, 1990.
[45] M. E. Straumanis, K. S. Chopra, “Lattice parameters, expansion co-efficients and extent of the Al2Au phase,” Physical Review Series 3 B - Solid State, vol. 7, pp. 1247-1263, 1973.
[46] C. West, “The Crystal Structure of AuAI2,” 1934.
[47] G. K. Abramyan, A. N. Pilyankevich, and I. N. Frantsevich, “Study of the compound AuAl in the form of thin film,” Doklay Akademii Nauk SSSR, vol. 196, pp. 1054-1055, 1971.
[48] K. Frank, and K. Schubert, “Kristallstruktur von AuAl,” Journal of the Less Common Metals, vol. 22, no. 3, pp. 349-354, 1970.
[49] H. Buechler and K. J. Range, “Hochdruchsynthese und kristallsruktur von Al3Au8,” Journal of Less-Common Metals, vol. 154, pp. 251-260, 1989.
[50] H. Buechler and K. J. Range, “Zur Kenntnis des beta-Mangan-typs: Hochdrucksynthese und Strukturverfeinerung von AlAu4,” Journal of Less-Common Metals, vol. 161, pp. 347-254, 1990.
[51] F. W. Wulff, C. Breach, D. Stephan et al., "Characterisation of intermetallic growth in copper and gold ball bonds on aluminium metallization." pp. 348-353.
[52] R. Pretorius, T. Marais, and C. Theron, “Thin film compound phase formation sequence: An effective heat of formation model,” Materials Science Reports, vol. 10, no. 1, pp. 1-83, 1993.
[53] C. Breach, and F. Wulff, “New observations on intermetallic compound formation in gold ball bonds: general growth patterns and identification of two forms of Au< sub> 4</sub> Al,” Microelectronics Reliability, vol. 44, no. 6, pp. 973-981, 2004.
[54] J. Murray, “The aluminium-copper system,” International metals reviews, vol. 30, no. 1, pp. 211-234, 1985.
[55] Y. Funamizu, and K. Watanabe, “Interdiffusion in the Al-Cu system,” TRANS JAPAN INST METALS, vol. 12, no. 3, pp. 147-152, 1971.
[56] H. Hentzell, R. Thompson, and K. Tu, “Interdiffusion in copper–aluminum thin film bilayers. I. Structure and kinetics of sequential compound formation,” Journal of applied physics, vol. 54, no. 12, pp. 6923-6928, 1983.
[57] F. Haidara, M.-C. Record, B. Duployer et al., “Investigation of reactive phase formation in the Al–Cu thin film systems,” Surface and Coatings Technology, vol. 206, no. 19, pp. 3851-3856, 2012.
[58] H. Xu, C. Liu, V. Silberschmidt et al., “A re-examination of the mechanism of thermosonic copper ball bonding on aluminium metallization pads,” Scripta Materialia, vol. 61, no. 2, pp. 165-168, 2009.
[59] H. Xu, C. Liu, V. Silberschmidt et al., “Behavior of aluminum oxide, intermetallics and voids in Cu–Al wire bonds,” Acta Materialia, vol. 59, no. 14, pp. 5661-5673, 2011.
[60] S. Murali, “Formation and growth of intermetallics in thermosonic wire bonds: Significance of vacancy–solute binding energy,” Journal of alloys and compounds, vol. 426, no. 1, pp. 200-204, 2006.
[61] P. G. Owen EA, Proc Phys Soc vol. 36:14, 1924.
[62] A. Meetsma, J. De Boer, and S. Van Smaalen, “Refinement of the crystal structure of tetragonal Al< sub> 2</sub> Cu,” Journal of Solid State Chemistry, vol. 83, no. 2, pp. 370-372, 1989.
[63] S. H. Cordier G, Stelter M. , Acta Crystallogr B, vol. 44:207, 1988.
[64] M.El-Boragy, R. Szepan, K. Schubert J Less-Common Met, vol. 29:133, 1972.
[65] B. Harbrecht, L.D.Gulay, Journal of Alloys and Compounds, vol. 367:103, 2004.
[66] S.Westman, L.Arnberg Acta Crystallogr A, vol. 34:399, 1978.
[67] L. Maiocco, D. Smyers, S. Kadiyala et al., “Intermetallic and void formation in gold wirebonds to aluminum films,” Materials Characterization, vol. 24, no. 4, pp. 293-309, 1990.
[68] G. Clatterbaugh, J. Weiner, and H. Charles Jr, “Gold-Aluminum intermetallics: Ball bond shear testing and thin film reaction couples,” Components, Hybrids, and Manufacturing Technology, IEEE Transactions on, vol. 7, no. 4, pp. 349-356, 1984.
[69] L. Maiocco, D. Smyers, P. Munroe et al., “Correlation between electrical resistance and microstructure in gold wirebonds on aluminum films,” Components, Hybrids, and Manufacturing Technology, IEEE Transactions on, vol. 13, no. 3, pp. 592-595, 1990.
[70] G. G. Harman, "Metallurgical failure modes of wire bonds." pp. 131-141.
[71] G.G. Harman, C. L. Wilson, “Materials problems affecting reliability and yield of wire bonding in VLSI design,” Materials Research Society Symposium Proceedings, pp. 401-413, 1989.
[72] I. A. Blech, H. Sello, J. Electrochem. Soc., vol. 113, pp. 1052 1966.
[73] C.-F. Yu, C.-M. Chan, L.-C. Chan et al., “Cu wire bond microstructure analysis and failure mechanism,” Microelectronics reliability, vol. 51, no. 1, pp. 119-124, 2011.
[74] H. Xu, C. Liu, V. Silberschmidt et al., “New mechanisms of void growth in Au–Al wire bonds: Volumetric shrinkage and intermetallic oxidation,” Scripta Materialia, vol. 65, no. 7, pp. 642-645, 2011.
[75] N. J. Noolu, N. M. Murdeshwar, K. J. Ely et al., “Degradation and failure mechanisms in thermally exposed Au–Al ball bonds,” Journal of materials research, vol. 19, no. 05, pp. 1374-1386, 2004.
[76] M. Drozdov, G. Gur, Z. Atzmon et al., “Detailed investigation of ultrasonic Al–Cu wire-bonds: II. Microstructural evolution during annealing,” Journal of materials science, vol. 43, no. 18, pp. 6038-6048, 2008.
[77] H.-S. Chang, K.-C. Hsieh, T. Martens et al., “Wire-bond void formation during high temperature aging,” Components and Packaging Technologies, IEEE Transactions on, vol. 27, no. 1, pp. 155-160, 2004.
[78] C. Hang, C. Wang, M. Mayer et al., “Growth behavior of Cu/Al intermetallic compounds and cracks in copper ball bonds during isothermal aging,” Microelectronics reliability, vol. 48, no. 3, pp. 416-424, 2008.
[79] R. E. Thomas, Winchell, V., James, K., and Scharr, T, “Plastic Outgassing Induced Wire Bond Failure,” 27th Proc. IEEE Electronics Components Conf., Arlington, Virginia, pp. 182–187, May 1618, 1977.
[80] N. T. Nakao M, Shimizu M, Tabata H, Ito K Lupinky J, Moore R,, Mat. Elec. Pack. And Interconnect., ch. Chap. 35, 1989.
[81] T. Uno, K. Tatsumi, Japan Inst Met ;63:406, 1999.
[82] T.Uno, S. Terashima, K.Onoue, K. Tatsumi, Proc. of Int. Sym. on Microelect, pp. 591, 1988.
[83] T. Uno, and K. Tatsumi, “Thermal reliability of gold–aluminum bonds encapsulated in bi-phenyl epoxy resin,” Microelectronics reliability, vol. 40, no. 1, pp. 145-153, 2000.
[84] T. Uno, “Bond reliability under humid environment for coated copper wire and bare copper wire,” Microelectronics Reliability, vol. 51, no. 1, pp. 148-156, 2011.
[85] P. S. Ho, and T. Kwok, “Electromigration in metals,” Reports on Progress in Physics, vol. 52, no. 3, pp. 301, 1989.
[86] K. Tu, “Recent advances on electromigration in very-large-scale-integration of interconnects,” Journal of Applied Physics, vol. 94, no. 9, pp. 5451-5473, 2003.
[87] C. M. Tan, and A. Roy, “Electromigration in ULSI interconnects,” Materials Science and Engineering: R: Reports, vol. 58, no. 1, pp. 1-75, 2007.
[88] I. A. Blech, “Electromigration in thin aluminum films on titanium nitride,” Journal of Applied Physics, vol. 47, no. 4, pp. 1203-1208, 1976.
[89] I. Blech, and C. Herring, “Stress generation by electromigration,” Applied Physics Letters, vol. 29, no. 3, pp. 131-133, 1976.
[90] C. Chen, H. Tong, and K. Tu, “Electromigration and thermomigration in Pb-free flip-chip solder joints,” Annual Review of Materials Research, vol. 40, pp. 531-555, 2010.
[91] C. Chen, H.-Y. Hsiao, Y.-W. Chang et al., “Thermomigration in solder joints,” Materials Science and Engineering: R: Reports, 2012.
[92] K.-i. Nakayama, Y. Matsui, and M. Yokoyama, “Reduction of series resistance in organic photovoltaic cells using a metal-doped layer,” Japanese journal of applied physics, vol. 44, pp. 633, 2005.
[93] H. Gan, W. Choi, G. Xu et al., “Electromigration in solder joints and solder lines,” JOM, vol. 54, no. 6, pp. 34-37, 2002.
[94] Standard, MIL-STD-883G METHOD 2011.
[95] B. S. Kumar, M. S. R. Malliah, L. Ming et al., "Process characterization of Cu & Pd coated Cu wire bonding on overhang die: Challenges and solution." pp. 859-867.
[96] C. C. Lee, P. J. Wang, and J. S. Kim, "Are intermetallics in solder joints really brittle?." pp. 648-652.
[97] W.-C. Kuan, S. Liang, and C. Chen, “Effect of bump size on current density and temperature distributions in flip-chip solder joints,” Microelectronics Reliability, vol. 49, no. 5, pp. 544-550, 2009.
[98] M.-Y. Guo, C. Lin, C. Chen et al., “Asymmetrical growth of Cu< sub> 6</sub> Sn< sub> 5</sub> intermetallic compounds due to rapid thermomigration of Cu in molten SnAg solder joints,” Intermetallics, 2012.
[99] H. Frederikse, R. Fields, and A. Feldman, “Thermal and electrical properties of copper‐tin and nickel‐tin intermetallics,” Journal of applied physics, vol. 72, no. 7, pp. 2879-2882, 1992.
[100] I. Lum, J. Jung, and Y. Zhou, “Bonding mechanism in ultrasonic gold ball bonds on copper substrate,” Metallurgical and materials transactions A, vol. 36, no. 5, pp. 1279-1286, 2005.
[101] Y. Takahashi, and S. Matsusaka, “Adhesional bonding of fine gold wires to metal substrates,” Journal of adhesion science and technology, vol. 17, no. 3, pp. 435-451, 2003.
[102] J. Chen, D. Degryse, P. Ratchev et al., “Mechanical issues of Cu-to-Cu wire bonding,” Components and Packaging Technologies, IEEE Transactions on, vol. 27, no. 3, pp. 539-545, 2004.
[103] Y. Du, Y. Chang, B. Huang et al., “Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation,” Materials Science and Engineering: A, vol. 363, no. 1, pp. 140-151, 2003.
[104] M. Shearer, C. Bauer, and A. Jordan, “Investigation of interdiffusion in thin film couples of aluminum and copper by Auger electron spectroscopy,” Thin Solid Films, vol. 61, no. 3, pp. 273-279, 1979.
[105] M. Anand, S. Murarka, and R. Agarwala, “Diffusion of copper in nickel and aluminum,” Journal of applied physics, vol. 36, no. 12, pp. 3860-3862, 1965.
[106] J. Hirvonen, “Aluminum diffusion in ion‐implanted noble metals,” Journal of Applied Physics, vol. 52, no. 10, pp. 6143-6146, 1981.
[107] C.-B. Ene, G. Schmitz, T. Al-Kassab et al., “Solid state reaction in sandwich-type Al/Cu thin films,” Ultramicroscopy, vol. 107, no. 9, pp. 802-807, 2007.
[108] G. Neumann, and C. Tuijn, Self-diffusion and impurity diffusion in pure metals: handbook of experimental data: Elsevier, 2011.
[109] S. Campisano, E. Costanzo, F. Scaccianoce et al., “Growth kinetics of the θ phase in Al Cu thin film bilayers,” Thin Solid Films, vol. 52, no. 1, pp. 97-101, 1978.
[110] A. Gershinskii, B. Fomin, E. Cherepov et al., “Investigation of diffusion in the Cu Al thin film system,” Thin Solid Films, vol. 42, no. 3, pp. 269-275, 1977.
[111] R. Hamm, and J. Vandenberg, “A study of the initial growth kinetics of the copper‐aluminum thin‐film interface reaction by in situ x‐ray diffraction and Rutherford backscattering analysis,” Journal of applied physics, vol. 56, no. 2, pp. 293-299, 1984.
[112] C.-Y. Chen, and W.-S. Hwang, “Effect of annealing on the interfacial structure of aluminum-copper joints,” Materials transactions, vol. 48, no. 7, pp. 1938-1947, 2007.
[113] H. Hentzell, and K. Tu, “Interdiffusion in copper–aluminum thin film bilayers. II. Analysis of marker motion during sequential compound formation,” Journal of applied physics, vol. 54, no. 12, pp. 6929-6937, 1983.